研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结...研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结果的正确性和有效性.另外,还给出了波动方程相应的无穷维H am ilton算子所生成的C0半群的具体表达式.展开更多
Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The nece...Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The necessary and sufficient conditions concerning the exponential stability of thefirst order singular distributed parameter systems are given.展开更多
文摘研究了无穷维H am ilton算子生成C0半群的问题,得到了类无穷维H am ilton算子生成C0半群的一个充分条件.把结果应用在一类双曲型混合问题生成的无穷维H am ilton算子上,证明此类算子生成C0半群,并利用H ille-Y osida定理进一步说明了结果的正确性和有效性.另外,还给出了波动方程相应的无穷维H am ilton算子所生成的C0半群的具体表达式.
基金This research is supported by the National Natural Science Foundation of China under Grant No.60674018.
文摘Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The necessary and sufficient conditions concerning the exponential stability of thefirst order singular distributed parameter systems are given.