期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration 被引量:1
1
作者 Lujuan Dang Badong Chen +2 位作者 Yulong Huang Yonggang Zhang Haiquan Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期450-465,共16页
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es... Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises. 展开更多
关键词 Cubature Kalman filter(CKF) inertial navigation system(INS)/global positioning system(gps)integration minimum error entropy with fiducial points(MEEF) non-Gaussian noise
下载PDF
A New Approach to Estimate True Position of Unmanned Aerial Vehicles in an INS/GPS Integration System in GPS Spoofing Attack Conditions 被引量:5
2
作者 Mohammad Majidi Alireza Erfanian Hamid Khaloozadeh 《International Journal of Automation and computing》 EI CSCD 2018年第6期747-760,共14页
This paper presents a new approach to estimate the true position of an unmanned aerial vehicle (UAV) in the conditions of spoofing attacks on global positioning system (GPS) receivers. This approach consists of tw... This paper presents a new approach to estimate the true position of an unmanned aerial vehicle (UAV) in the conditions of spoofing attacks on global positioning system (GPS) receivers. This approach consists of two phases, the spoofing detection phase which is accomplished by hypothesis test and the trajectory estimation phase which is carried out by applying the adapted particle filters to the integrated inertial navigation system (INS) and GPS. Due to nonlinearity and unfavorable impacts of spoofing signals on GPS receivers, deviation in position calculation is modeled as a cumulative uniform error. This paper also presents a procedure of applying adapted particle swarm optimization filter (PSOF) to the INS/GPS integration system as an estimator to compensate spoofing attacks. Due to memory based nature of PSOF and benefits of each particle's experiences, application of PSOF algorithm in the INS/GPS integ- ration system leads to more precise positioning compared with general particle filter (PF) and adaptive unscented particle filer (AUPF) in the GPS spoofing attack scenarios. Simulation results show that the adapted PSOF algorithm is more reliable and accurate in estim- ating the true position of UAV in the condition of spoofing attacks. The validation of the proposed method is done by root mean square error (RMSE) test. 展开更多
关键词 Inertial navigation system (INS)/global positioning system gps integration unmanned aerial vehicles (UAVs) position estimation SPOOFING particle based filters
原文传递
双层双向长短期记忆应用于云轨精确定位 被引量:3
3
作者 姚顺宇 王志武(指导) 颜国正 《光学精密工程》 EI CAS CSCD 北大核心 2020年第1期166-173,共8页
目前国内出现了一种新型云轨,云轨有着造价低、能耗小以及施工周期较短等优点。然而云轨的各项指标要求很高,其中轨道定位尤为重要。为了实现了云轨检测的精确定位,本文设计了一种新型轨道检测车,并开发了基于双层双向长短期记忆模型(LS... 目前国内出现了一种新型云轨,云轨有着造价低、能耗小以及施工周期较短等优点。然而云轨的各项指标要求很高,其中轨道定位尤为重要。为了实现了云轨检测的精确定位,本文设计了一种新型轨道检测车,并开发了基于双层双向长短期记忆模型(LSTM)的云轨SIN-GPS定位算法。首先,介绍了轨道检测车的机械结构和各项传感器参数。接着,分析了传统的SIN-GPS定位算法及其缺点,在GPS信号消失后会出现误差积累。然后,引出双层双向长短期记忆模型,说明了该模型对GPS信号消失时的误差动态学习和补偿。最后,通过3组实验分析算法在云轨检测车的不同运动状态下的准确率。证明了长短期记忆模型均优于传统算法模型和其他智能算法模型。实验结果表明:在运动状态下LSTM算法比SINS误差小79.8%,静止状态下SINS误差最小。设定速度阈值为0.2 m/s,大于此阈值采用LSTM算法,小于此阈值直接用SINS的数据,可以得到最准确的位置预测结果。 展开更多
关键词 捷联惯性导航/全球定位系统 信号丢失 长短期记忆模型 神经网络
下载PDF
SINS/GPS组合平滑估计在机载SAR实时运动补偿中的应用 被引量:4
4
作者 宫晓琳 秦婷婷 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1560-1565,共6页
针对机载合成孔径雷达(SAR)实时成像运动补偿对高精度运动参数的需求,该文提出一种基于捷联惯性导航系统/全球定位系统(SINS/GPS)组合Rauch-Tung-Striebel(R-T-S)平滑估计的实时运动补偿方案。该方案在实时卡尔曼滤波的基础上,对SAR每... 针对机载合成孔径雷达(SAR)实时成像运动补偿对高精度运动参数的需求,该文提出一种基于捷联惯性导航系统/全球定位系统(SINS/GPS)组合Rauch-Tung-Striebel(R-T-S)平滑估计的实时运动补偿方案。该方案在实时卡尔曼滤波的基础上,对SAR每一次合成孔径时间段内的滤波结果再进行后向平滑递推,进一步修正滤波结果。仿真试验和飞行成像数据处理结果表明,该方案可以有效提高合成孔径时间段内运动参数的估计精度。 展开更多
关键词 合成孔径雷达 运动补偿 捷联惯性导航系统 全球定位系统组合 平滑估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部