Shen Chromothripsis,a type of complex chromosomal rearrangement originally known as chromoanagenesis,has been a subject of extensive investigation due to its potential role in various diseases,particularly cancer.Chro...Shen Chromothripsis,a type of complex chromosomal rearrangement originally known as chromoanagenesis,has been a subject of extensive investigation due to its potential role in various diseases,particularly cancer.Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period,leading to complex alterations in one or a few chromosomes.This phenomenon is triggered by chromosome mis-segregation during mitosis.Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges.The association between chromothripsis and cancer has attracted significant interest,with potential implications for tumorigenesis and disease prognosis.This review aims to explore the intricate mechanisms and consequences of chromothripsis,with a specific focus on its association with mitotic perturbations.Herein,we discuss a comprehensive analysis of crucial molecular entities and pathways,exploring the intricate roles of the CIP2A–TOPBP1 complex,micronuclei formation,chromatin bridge processing,DNA damage repair,and mitotic checkpoints.Moreover,the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis,paving the way for future therapeutic interventions in various diseases.展开更多
Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks ...Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.展开更多
We present an efficient and elementary method to find the partial fraction decomposition of a rational function when the denominator is a product of two highly powered linear factors.
基金supported by the Ministry of Science and Technology of China and the National Natural Science Foundation of China(2022YFA1303100,32090040,92254302,2022YFA0806800,91854203,31621002,2017YFA0503600,21922706,92153302 to X.L.,2022YFA1302700 to Z.W.)the Ministry of Education(IRT_17R102,20113402130010,YD2070006001 to X.L.)+1 种基金the Fundamental Research Funds for the Central Universities(WK2070000194 to X.L.)the University of Science and Technology of China Start-up Fund(KY9990000167 to Z.W.).
文摘Shen Chromothripsis,a type of complex chromosomal rearrangement originally known as chromoanagenesis,has been a subject of extensive investigation due to its potential role in various diseases,particularly cancer.Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period,leading to complex alterations in one or a few chromosomes.This phenomenon is triggered by chromosome mis-segregation during mitosis.Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges.The association between chromothripsis and cancer has attracted significant interest,with potential implications for tumorigenesis and disease prognosis.This review aims to explore the intricate mechanisms and consequences of chromothripsis,with a specific focus on its association with mitotic perturbations.Herein,we discuss a comprehensive analysis of crucial molecular entities and pathways,exploring the intricate roles of the CIP2A–TOPBP1 complex,micronuclei formation,chromatin bridge processing,DNA damage repair,and mitotic checkpoints.Moreover,the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis,paving the way for future therapeutic interventions in various diseases.
文摘Aperture-dependent motion compensation is important for wide beam Synthetic Aperture Radar(SAR) data processing.This paper studies a wide beam motion compensation algorithm based on frequency division.It takes blocks along azimuth dimension in frequency domain and applies an-gle-variant motion compensation in time domain.With this frequency division based motion com-pensation approach,the effects of aperture-dependent residual phase errors are corrected precisely.The rationale and procedure of this algorithm are introduced in detail.Point targets and images of a P-band airborne SAR with motion errors are simulated to validate this algorithm.Compared with the wide beam motion compensation algorithms based on time division,the proposed algorithm has better performance,especially in terms of high-frequency motion errors.
文摘We present an efficient and elementary method to find the partial fraction decomposition of a rational function when the denominator is a product of two highly powered linear factors.