Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesiz...Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.展开更多
The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfuriza...The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar, purification and hydrogenation were studied. The catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalysttypes, catalyst particle size, syngas flow at entering end and composition of syngas was investigated. The optimum process conditions and yield of methanol from cornstalk syngas were obtained. The experimental results indicated that the proper catalyst of the synthetic reaction was C301 and the optimum catalyst size (φ) was 0.833 mm×0.351 mm. The optimum operating temperature and pressure were found to be 235℃ and 5 Mpa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the best composition of syngas were CO 10.49%, CO2 8.8%, N2 37.32%, CnHm 0.95% and H2 40.49%. The best methanol yield is 0.418 g/g cornstalk. The study provided the technical support for the industrial test of methanol production from biomass (cornstalk)gas.展开更多
基金The authors would like to thank the Australian Research Council(ARC DP170103317,DP200103043)for financial support during the course of this study.Prof Jun Chen would like to thank the Australian National Fabrication Facility and EMC at the University of Wollongong for facilities/equipment access.
文摘Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.
基金Project supported by the Foundation of Science and Technology of Henan Province (No. 0324210047).
文摘The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar, purification and hydrogenation were studied. The catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalysttypes, catalyst particle size, syngas flow at entering end and composition of syngas was investigated. The optimum process conditions and yield of methanol from cornstalk syngas were obtained. The experimental results indicated that the proper catalyst of the synthetic reaction was C301 and the optimum catalyst size (φ) was 0.833 mm×0.351 mm. The optimum operating temperature and pressure were found to be 235℃ and 5 Mpa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the best composition of syngas were CO 10.49%, CO2 8.8%, N2 37.32%, CnHm 0.95% and H2 40.49%. The best methanol yield is 0.418 g/g cornstalk. The study provided the technical support for the industrial test of methanol production from biomass (cornstalk)gas.