期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
利用近红外及中红外融合技术对小麦产地和烘干程度的同时鉴别 被引量:18
1
作者 邹小波 封韬 +3 位作者 郑开逸 石吉勇 黄晓玮 孙悦 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第5期1445-1450,共6页
小麦是制作馒头的主要原料之一,小麦中水、蛋白质、淀粉会因产地以及烘干程度的差异而不同,进而影响到加工成馒头的品质。所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。感官评定是鉴别小麦产地和烘干程度常用的方法,对比感... 小麦是制作馒头的主要原料之一,小麦中水、蛋白质、淀粉会因产地以及烘干程度的差异而不同,进而影响到加工成馒头的品质。所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。感官评定是鉴别小麦产地和烘干程度常用的方法,对比感官评定,光谱分析可以识别样品中的分子结构等信息。基于此,尝试利用近红外和中红外光谱融合技术实现对不同产地和不同烘干程度的小麦同时鉴别。首先选取了两个不同产地的小麦,再利用微波干燥法对两个不同产地的小麦做烘干预处理,使烘干的小麦水含量为12%±0.5%,原麦水含量为18%±0.5%。分别标记为原麦A,烘干A,原麦B,烘干B,再将小麦研磨成粉末,过100目筛网筛选后,置于自封袋中备用。随后分别采集四种小麦样品的近红外和中红外光谱信息,在Matlab 7.10的环境下使用标准正态变量变换(standard normal variable transformation, SNVT)对采集到的原始光谱数据进行预处理,利用主成分分析对预处理后的数据进行降维处理,再结合线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)分别建立小麦近红外、中红外光谱数据识别模型。另外利用联合区间偏最小二乘法(synergy interval partial least square, SiPLS)筛选出利用标准正态变量变换(SNVT)预处理后的小麦近红外和中红外光谱数据特征光谱区间,将筛选出的近红外和中红外光谱数据特征光谱区间融合后再结合线性判别分析(LDA)和支持向量机(SVM)建立小麦融合光谱信息的识别模型。然后比较同种光谱数据下利用线性判别分析(LDA)和支持向量机(SVM)建立的小麦识别模型识别率、比较同种建模方法下近红外和中红外光谱数据建立小麦识别模型识别率、比较同种建模方法下光谱数据融合和单一光谱数据建立小麦识别模型识别率。结果表明,同种光谱分析方法,利用SVM 展开更多
关键词 小麦 光谱分析技术 联合区间偏最小二乘法 线性判别分析 支持向量机
下载PDF
特征波长筛选在近红外光谱测定梨硬度中的应用 被引量:15
2
作者 朱伟兴 江辉 陈全胜 《农业工程学报》 EI CAS CSCD 北大核心 2010年第8期368-372,共5页
为了提高应用近红外光谱分析技术快速测定梨硬度的精度和稳定性,该研究采用联合区间偏最小二乘和遗传算法(siPLS-GA)在校正模型中用来筛选特征光谱区域和波长,通过交互验证法确定模型的主成分因子数和筛选的波长,并以预测均方根误差(RMS... 为了提高应用近红外光谱分析技术快速测定梨硬度的精度和稳定性,该研究采用联合区间偏最小二乘和遗传算法(siPLS-GA)在校正模型中用来筛选特征光谱区域和波长,通过交互验证法确定模型的主成分因子数和筛选的波长,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型的评价标准。基于siPLS-GA的最优模型包含4个光谱区、96个变量和10个主成分因子。该模型结果显示:最佳预测模型相关系数(Rp)和RMSEP分别为0.9083和0.5573。研究结果表明,近红外光谱技术结合siPLS-GA建模用于无损、快速测定梨的硬度是可行的。 展开更多
关键词 近红外光谱 联合区间偏最小二乘 遗传算法 硬度
下载PDF
MIV方法在苹果糖度近红外分析中的应用 被引量:8
3
作者 陈鑫 刘飞 《计算机与应用化学》 CAS CSCD 北大核心 2012年第7期812-816,共5页
针对苹果糖度近红外光谱数据的特点,分析了基于BP神经网络和偏最小二乘PLS的苹果糖度定量预测模型建立方法:,将平均影响值方法:(mean impact value)引入到近红外波长选取的过程中来,并与联合区间偏最小二乘法结合,达到波长优选的目的:... 针对苹果糖度近红外光谱数据的特点,分析了基于BP神经网络和偏最小二乘PLS的苹果糖度定量预测模型建立方法:,将平均影响值方法:(mean impact value)引入到近红外波长选取的过程中来,并与联合区间偏最小二乘法结合,达到波长优选的目的:。首先,利用联合区间偏最小二乘算法,筛选出与苹果的糖度相关度较大的光谱波长数据,再利用PLS-BP方法:建立预测模型。在此模型基础上,使用平均影响值方法:,对参与建模的每个波长数据进行评价,选取影响值最大的一系列波长点,重新建立模型。模型变量数为124,校正均方根误差(RMSEC)为0.1740,验证均方根误差(RMSEP)为0.4565。结果:表明,校正均方根误差,利用平均影响值与联合区间偏最小二乘方法:结合,对光谱数据进行波长的筛选,可以降低模型复杂度,同时提高模型预测精度。 展开更多
关键词 苹果近红外光谱 平均影响值(MIV) BP神经网络 联合区间偏最小二乘(sipls)
原文传递
近红外光谱结合siPLS法用于深度水解蛋白奶粉掺伪的快速检测
4
作者 万恒兴 冯丽雄 余展旺 《山东化工》 CAS 2024年第11期150-153,157,共5页
目的:建立深度水解蛋白奶粉中掺伪普通蛋白粉的快速检测方法。方法:向深度水解蛋白奶粉掺伪一定比例的牛乳清蛋白粉和植物蛋白粉,共制备171个掺伪样品,并采集近红外光谱;对采集的样品光谱使用SPXY法按3∶1比例划分为校正集和预测集,应... 目的:建立深度水解蛋白奶粉中掺伪普通蛋白粉的快速检测方法。方法:向深度水解蛋白奶粉掺伪一定比例的牛乳清蛋白粉和植物蛋白粉,共制备171个掺伪样品,并采集近红外光谱;对采集的样品光谱使用SPXY法按3∶1比例划分为校正集和预测集,应用联合区间偏最小二乘法(siPLS)建立掺伪检测模型,并比较不同预处理方法下的建模效果。结果:SG一阶导预处理下建立的siPLS模型效果最好,其组合区间光谱范围为[1135~1239.5,1660~1764.5,2080~2184.5 nm],校正集相关系数R^(2)为0.9948,RMSECV值为0.0101,预测集相关系数R^(2)为0.9945,RMSEP值为0.0110,RPD值为13.5。结论:通过siPLS法筛选光谱区间建模,可提高模型的稳定性和预测精度,本方法操作简便,可用于深度水解蛋白奶粉中的掺伪蛋白粉的快速无损检测。 展开更多
关键词 近红外光谱 深度水解蛋白奶粉掺伪 联合区间偏最小二乘(sipls) 奶粉掺伪
下载PDF
脐橙可溶性固形物含量的光谱检测技术研究 被引量:4
5
作者 田喜 何绍兰 +5 位作者 吕强 易时来 谢让金 郑永强 邓烈 廖秋红 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期122-129,共8页
以晚熟脐橙为试材,采用近红外光谱技术与常规检测分析相结合的方法,对比和评价了基于果面和果汁光谱信息的脐橙可溶性固形物(TSS)含量预测模型精度,并筛选了可溶性固形物预测特征光谱.通过对果面和果汁原始光谱的多元散射校正(MSC)预处... 以晚熟脐橙为试材,采用近红外光谱技术与常规检测分析相结合的方法,对比和评价了基于果面和果汁光谱信息的脐橙可溶性固形物(TSS)含量预测模型精度,并筛选了可溶性固形物预测特征光谱.通过对果面和果汁原始光谱的多元散射校正(MSC)预处理,利用偏最小二乘法(PLS)分别建立了TSS预测模型,其中,当果面光谱主因子为5时,其对于可溶性固形物预测相关系数为最大(R=0.836 7)、预测均方根误差(RMSEP)为最小(RMSEP=0.490 3);而当果汁光谱主因子为8时,其对果汁可溶性固形物的预测相关系数为最大(R=0.905 8)、预测均方根误差为最小(RMSEP=0.523 6).采用联合区间偏最小二乘法(siPLS)对果面和果汁光谱特征波段组合进行筛选,获得果面光谱建模特征波段组合为1 000~1 107,1 750~1 857,2 071~2 177和2 178~2 284nm,建立的校正集和预测集模型相关系数分别为0.946 2和0.902 0,RMSECV为0.359 6,RMSEP为0.430 9;获得用于果汁光谱建模的特征波段组合为1 000~1 125,1 251~1 375,1 376~1 500和1 626~1 750nm,校正和预测模型相关系数分别为0.989 4和0.959 6,RMSECV为0.163 1,RMSEP为0.312 8.结果表明:试验所筛选出的果面和果汁近红外光谱特征波段组合建立的校正模型,均可用于晚熟脐橙TSS含量的无损检测,果汁光谱对于甜橙果实固形物含量预测精度高于果面光谱,近红外光谱技术用于橙汁固形物检测是可行的. 展开更多
关键词 鲍威尔脐橙 近红外漫反射光谱 可溶性固形物 联合区间偏最小二乘法
下载PDF
可视传感器技术快速测定淡水鱼细菌总数 被引量:3
6
作者 黄星奕 穆丽君 姚丽娅 《食品科学》 EI CAS CSCD 北大核心 2013年第24期83-87,共5页
以鳊鱼为对象,采用可视传感器检测技术建立一种淡水鱼细菌总数快速测定的方法。首先,利用可视传感器技术采集鳊鱼的气味,用图像处理技术提取传感器阵列与样品气味反应前后的图像颜色差值作为鱼的气味特征信息;同时,采用平板计数法测定... 以鳊鱼为对象,采用可视传感器检测技术建立一种淡水鱼细菌总数快速测定的方法。首先,利用可视传感器技术采集鳊鱼的气味,用图像处理技术提取传感器阵列与样品气味反应前后的图像颜色差值作为鱼的气味特征信息;同时,采用平板计数法测定细菌总数来评定鱼的新鲜等级;最后,采用最小二乘法(PLS)和联合区间偏最小二乘法(siPLS)建立基于气味信息与细菌总数间高效、精确的鱼类新鲜度判别模型。结果显示,siPLS模型较优,其校正集和预测集相关系数分别达到88.96%和83.29%。结果表明,可视传感器技术能够用于预测鱼的细菌总数,具有方便、快速、无损、成本低等优越性。 展开更多
关键词 鳊鱼 细菌总数 可视传感器技术 偏最小二乘法 联合区间偏最小二乘法
下载PDF
基于近红外光谱法污泥中糖原含量的快速分析 被引量:2
7
作者 姚亮 申慧彦 +3 位作者 李卫华 叶翠红 王佳琴 尹力 《环境科学与技术》 CAS CSCD 北大核心 2018年第7期145-149,共5页
采用蒽酮比色法测定厌氧发酵污泥中糖原的含量,运用不同的偏最小二乘法(PLS)算法建立近红外光谱与糖原含量的定量分析模型。根据校正集的相关系数(Rc)、校正均方根误差(RMSECV)以及预测集的相关系数(Rp)和预测均方根误差(RMSEP)评价各... 采用蒽酮比色法测定厌氧发酵污泥中糖原的含量,运用不同的偏最小二乘法(PLS)算法建立近红外光谱与糖原含量的定量分析模型。根据校正集的相关系数(Rc)、校正均方根误差(RMSECV)以及预测集的相关系数(Rp)和预测均方根误差(RMSEP)评价各个模型。在建立的所有模型中,联合区间偏最小二乘(Si PLS)将全光谱等分为24个区间,联合子区间[17 19 20]建立的模型是最优的,其校正时的Rc=0.993 7,RMSECV=0.066 2;预测时的Rp=0.993 3,RMSEP=0.048 3。运用变异系数(CV)验证所建最佳模型的稳定性和可靠性,发现预测集样品中的CV值均≤2%。结果表明Si PLS可以优化模型,提高模型预测能力,从而可以实现污泥中糖原含量的快速测定。 展开更多
关键词 近红外光谱 联合区间偏最小二乘 糖原
下载PDF
近红外光谱与组合的间隔偏最小二乘法测定清开灵四混液中总氮和栀子苷的含量 被引量:42
8
作者 朱向荣 李娜 +2 位作者 史新元 乔延江 张卓勇 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2008年第5期906-911,共6页
应用近红外光谱分析技术结合化学计量学方法,建立了中药清开灵注射液中间体总氮和栀子苷含量测定的新方法.首先采用Kernard-Stone法对训练集样本和预测集样品进行分类,然后应用组合的间隔偏最小二乘法(Synergy interval partial least s... 应用近红外光谱分析技术结合化学计量学方法,建立了中药清开灵注射液中间体总氮和栀子苷含量测定的新方法.首先采用Kernard-Stone法对训练集样本和预测集样品进行分类,然后应用组合的间隔偏最小二乘法(Synergy interval partial least squares,siPLS)对所得近红外透射光谱进行有效谱段范围的选择以及二者定量校正模型的建立,并对光谱预处理方法进行了详细的讨论.所建立的总氮和栀子苷校正模型的预测相关系数(R)分别为0.999和0.708;交叉验证误差均方根(RMSECV)均为0.023;预测误差均方根(RMSEP)分别为0.074和0.159;预测结果表明,本实验所建方法快速、无损且可靠,可推广并应用于中药注射液中间体的在线质量控制. 展开更多
关键词 近红外光谱 清开灵注射液中间体 Kemard—Stone法 组合的间隔偏最小二乘法 在线控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部