Objective To determine the interaction between 2450-MHz microwaves (MW) radiation and mitomycin C (MMC). Methods The synergistic genotoxic effects of low-intensity 2450-MHz microwave and MMC on human lymphocytes were ...Objective To determine the interaction between 2450-MHz microwaves (MW) radiation and mitomycin C (MMC). Methods The synergistic genotoxic effects of low-intensity 2450-MHz microwave and MMC on human lymphocytes were studied using single cell gel electrophoresis (SCGE) assay (comet assay) and cytokinesis-blocked micronucleus (CBMN) test in vitro. The whole blood cells from a male donor and a female donor were either only exposed to 2450-MHz microwaves (5.0 mW/cm2) for 2 h or only exposed to MMC (0.0125 μ/mL, 0.025 μg/mL, 0.05μg/mL and 0.1 μg/mL) for 24 h; and the samples were exposed to MMC for 24 h after exposure to MW for 2 h. Results In the comet assay, the comet lengths ( 29.1 μm and 25.9 μm) of MW were not significantly longer than those (26.3 μrn and 24.1 μm) of controls (P>0.05). The comet lengths (57.4 μm, 68.9 μm, 91.4 μm, 150.6μm and 50.6 μm, 71.7μm, 100.1 μm, 145.1 μm) of 4 MMC groups were significantly longer than those of controls (P<0.01). The comet lengths (59.1 μm, 92.3 μm, 124.5 μm, 182.7 μm and 57.4 μm, 85.5 μm, 137.5 μm, 178.3 μm) of 4 MW plus MMC groups were significantly longer than those of controls too (P<0.01). The comet lengths of MW plus MMC groups were significantly longer than those of the corresponding MMC doses (P<0.05 or P<0.01) when the doses of MMC were ≥50.025 μg/mL. In the CBMN, the micronucleated cell (MNC) rates of MW were 5% and 6%, which showed no difference compared with those (4‰ and 4‰) of controls (P>0.05). The MNC rates of 4 MMC groups were 8‰, 9‰, 14‰, 23‰ and 8‰, 8‰, 16‰, 30‰ respectively. When the doses of MMC were 3≥0.05 μg/mL, MNC rates of MMC were higher than those of controls (P<0.05). MNC rates of 4 MW plus MMC groups were 12‰, 13‰, 20‰, 32‰ and 8‰, 9‰, 23‰, 40‰. When the doses of MMC were 5≥0.05 μg/mL, MNC rates of MW plus MMC groups were much higher than those of controls (P<0.01). MNC rates of 4 MW plus MMC groups were not significantly higher than those of the corresponding MMC doses. Concl展开更多
Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed usi...Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy.The performance of calcined red mud was determined through mortar strength tests.Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud,and increase the surface roughness and specific surface area.At the optimal temperature of 700°C,the addition of calcined red mud still leads to a decrease in mortar strength,but its activity index and flexural coefficient increase by 16.2%and 11.9%with respect to uncalcined red mud,reaching values of 0.826 and 0.974,respectively.Compared with the control group,the synergistic activation of calcined red mud with slag can increase the compressive and flexural strength of the mortar by 12.9%and 1.5%,reaching 8.7 and 62.4 MPa,respectively.Correspondingly,the activity index and flexural coefficient of the calcined RM and GGBS(Ground Granulated Blast furnace Slag)mixtures also increase to 1.015 and 1.130,respectively.展开更多
Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone...Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.展开更多
基金This work was supported by the Natural Science Foundation of Zhejiang Province (No.300434), 2001-2003, and International Cooperation Foundation of Science-Technique Bureau of Zhejiang Province (No. 012104), 2001-2002.
文摘Objective To determine the interaction between 2450-MHz microwaves (MW) radiation and mitomycin C (MMC). Methods The synergistic genotoxic effects of low-intensity 2450-MHz microwave and MMC on human lymphocytes were studied using single cell gel electrophoresis (SCGE) assay (comet assay) and cytokinesis-blocked micronucleus (CBMN) test in vitro. The whole blood cells from a male donor and a female donor were either only exposed to 2450-MHz microwaves (5.0 mW/cm2) for 2 h or only exposed to MMC (0.0125 μ/mL, 0.025 μg/mL, 0.05μg/mL and 0.1 μg/mL) for 24 h; and the samples were exposed to MMC for 24 h after exposure to MW for 2 h. Results In the comet assay, the comet lengths ( 29.1 μm and 25.9 μm) of MW were not significantly longer than those (26.3 μrn and 24.1 μm) of controls (P>0.05). The comet lengths (57.4 μm, 68.9 μm, 91.4 μm, 150.6μm and 50.6 μm, 71.7μm, 100.1 μm, 145.1 μm) of 4 MMC groups were significantly longer than those of controls (P<0.01). The comet lengths (59.1 μm, 92.3 μm, 124.5 μm, 182.7 μm and 57.4 μm, 85.5 μm, 137.5 μm, 178.3 μm) of 4 MW plus MMC groups were significantly longer than those of controls too (P<0.01). The comet lengths of MW plus MMC groups were significantly longer than those of the corresponding MMC doses (P<0.05 or P<0.01) when the doses of MMC were ≥50.025 μg/mL. In the CBMN, the micronucleated cell (MNC) rates of MW were 5% and 6%, which showed no difference compared with those (4‰ and 4‰) of controls (P>0.05). The MNC rates of 4 MMC groups were 8‰, 9‰, 14‰, 23‰ and 8‰, 8‰, 16‰, 30‰ respectively. When the doses of MMC were 3≥0.05 μg/mL, MNC rates of MMC were higher than those of controls (P<0.05). MNC rates of 4 MW plus MMC groups were 12‰, 13‰, 20‰, 32‰ and 8‰, 9‰, 23‰, 40‰. When the doses of MMC were 5≥0.05 μg/mL, MNC rates of MW plus MMC groups were much higher than those of controls (P<0.01). MNC rates of 4 MW plus MMC groups were not significantly higher than those of the corresponding MMC doses. Concl
基金“Key Science and Technology Project of Guangxi Department of Communications-Technology Development and Application of Cement Red Clay Stabilized Sea Sand Semi-Rigid Subgrade”(Grant:Gui Jiaotong 2020-No.150)“Key Science and Technology Project of Guangxi Department of Transportation-Key Technologies and Application Demonstrations for the Multi-Solid Waste Co-Processing of Bayer Red Mud in Large-Scale Road Construction”(Grant:Gui Jiaotong 2021-No.148).
文摘Red mud(RM)is a low-activity industrial solid waste,and its utilization as a resource is currently a hot topic.In this study,the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy.The performance of calcined red mud was determined through mortar strength tests.Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud,and increase the surface roughness and specific surface area.At the optimal temperature of 700°C,the addition of calcined red mud still leads to a decrease in mortar strength,but its activity index and flexural coefficient increase by 16.2%and 11.9%with respect to uncalcined red mud,reaching values of 0.826 and 0.974,respectively.Compared with the control group,the synergistic activation of calcined red mud with slag can increase the compressive and flexural strength of the mortar by 12.9%and 1.5%,reaching 8.7 and 62.4 MPa,respectively.Correspondingly,the activity index and flexural coefficient of the calcined RM and GGBS(Ground Granulated Blast furnace Slag)mixtures also increase to 1.015 and 1.130,respectively.
文摘Aimed at the current treatment status of the polymer-flooding wastewater in Bohai oilfield, electrochemical technology used for polymer-degradation and oil-removal was researched. It formed the process flow of cyclone mixed dosing → electrochemical removal oil → inclined tube removal oil → walnut shell filter, and a set of skid mounted wastewater containing polymer treatment plant was designed and manufactured, which was used for the field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. The result shows that the oil removal rate of the electrochemical treatment process is over 98%, and the synergistic effect is significant especially used in conjunction with water clarifier of BHQ-04. When the amount of water clarifier is 50 - 150 mg/L, the oil content, the median particle diameter and the suspended solids content of the filtered water is 8 - 18 mg/L, 1.9 - 2.26 μm and 1.39 - 2.04 mg/L respectively, which reach the scene water quality standards for water injection.