In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequen...In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.展开更多
With the rapid development of inverter-based generators(IGs),power grid is faced with critical frequency stability challenges because the existing IGs have no inertia.To equip IGs with inertial response,researchers ha...With the rapid development of inverter-based generators(IGs),power grid is faced with critical frequency stability challenges because the existing IGs have no inertia.To equip IGs with inertial response,researchers have proposed several virtual inertia control methods,which can be classified into two categories:virtual synchronous generator(VSG)control and droop control based on rate of change of frequency(ROCOFdroop control).In this paper,the comparison between both virtual inertia control methods is conducted from three perspectives:mathematical model,output characteristic and small-signal stability.State-space models are firstly built to analyze the control mechanism of VSG control and ROCOF-droop control methods.Simulation and eigenvalue analysis are conducted to study the transient responses and oscillation characteristics of both methods,which is helpful to understand the advantages and limitations of existing virtual inertia control methods.Finally,the obtained theoretical results are validated through realtime laboratory(RT-LAB)hardware-in-loop simulation platform.展开更多
Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power sy...Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power systems induced by grid-connected wind farms.First,characteristics of several severe SSO incidents encountered by real power systems caused by grid-connected wind farms are introduced.Second,in terms of principles and responses,this paper illustrates the most commonly adopted mechanism investigation methods for SSOs,which include impedance-based analysis(IMA)and the openloop modal analysis(OMA)methods.Systematic reviews that summarize existing studies using the IMA and OMA methods are discussed in this paper.Furthermore,a discussion of the current research gaps in the investigation of SSOs in power systems caused by grid-connected wind farms is presented.展开更多
Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually o...Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.展开更多
The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interaction...The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.展开更多
This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from ...This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from PMUs are preprocessed to check for the presence of oscillations.If the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida algorithm.The superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest China.Results show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.展开更多
With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading ...With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.展开更多
In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incide...In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51577174).
文摘In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.
基金supported by the technology project of State Grid Corporation of China and the technology project of State Grid Jibei Electric Power Corporation
文摘With the rapid development of inverter-based generators(IGs),power grid is faced with critical frequency stability challenges because the existing IGs have no inertia.To equip IGs with inertial response,researchers have proposed several virtual inertia control methods,which can be classified into two categories:virtual synchronous generator(VSG)control and droop control based on rate of change of frequency(ROCOFdroop control).In this paper,the comparison between both virtual inertia control methods is conducted from three perspectives:mathematical model,output characteristic and small-signal stability.State-space models are firstly built to analyze the control mechanism of VSG control and ROCOF-droop control methods.Simulation and eigenvalue analysis are conducted to study the transient responses and oscillation characteristics of both methods,which is helpful to understand the advantages and limitations of existing virtual inertia control methods.Finally,the obtained theoretical results are validated through realtime laboratory(RT-LAB)hardware-in-loop simulation platform.
基金This work was supported by the Science and Technology Project of State Grid Corporation of China(No.NYB17201800102).
文摘Sub-synchronous oscillation(SSO)incidents caused by dynamic interaction between wind farms and power system grids can threaten safe and reliable operations.This paper investigates mechanism studies of SSOs in power systems induced by grid-connected wind farms.First,characteristics of several severe SSO incidents encountered by real power systems caused by grid-connected wind farms are introduced.Second,in terms of principles and responses,this paper illustrates the most commonly adopted mechanism investigation methods for SSOs,which include impedance-based analysis(IMA)and the openloop modal analysis(OMA)methods.Systematic reviews that summarize existing studies using the IMA and OMA methods are discussed in this paper.Furthermore,a discussion of the current research gaps in the investigation of SSOs in power systems caused by grid-connected wind farms is presented.
文摘Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller.
文摘The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.
基金supported by Korea Electric Power Corporation(No.R21XO01-38)Korea Ministry of Environment(MOE)as Graduate School specialized in Climate Change.
文摘This paper proposes an empirical wavelet transform(EWT)based method for identification and analysis of sub-synchronous oscillation(SSO)modes in the power system using phasor measurement unit(PMU)data.The phasors from PMUs are preprocessed to check for the presence of oscillations.If the presence is established,the signal is decomposed using EWT and the parameters of the mono-components are estimated through Yoshida algorithm.The superiority of the proposed method is tested using test signals with known parameters and simulated using actual SSO signals from the Hami Power Grid in Northwest China.Results show the effectiveness of the proposed EWT-Yoshida method in detecting the SSO and estimating its parameters.
基金National Key Research and Development Program of China under Grant No.2017YFB0902002.
文摘With the rapid development of wind power, wind turbines are accompanied by a large quantity of power electronic converters connected to the grid, causing changes in the characteristics of the power system and leading to increasingly serious sub-synchronous oscillation (SSO) problems, which urgently require the generalized classification and characterization of the emerging oscillation problems. This paper classifies and characterizes the emerging types of SSO caused by grid-connected wind turbines to address these issues. Finally, the impact of the typical system parameters changes on the oscillation pattern is analyzed in depth to provide effective support for the subsequent suppression and prevention of SSO.
基金supported by the China Key Technology Research on Risk Perception of Sub-Synchronous Oscillation of Grid with Large-Scale New Energy Access SGTYHT/21-JS-223.
文摘In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.