Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and suffici...Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of s...A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.展开更多
Exact solutions for generally supported functionally graded plane beams are given within the framework of symplectic elasticity. The Young's modulus is assumed to exponentially vary along the longitudinal direction w...Exact solutions for generally supported functionally graded plane beams are given within the framework of symplectic elasticity. The Young's modulus is assumed to exponentially vary along the longitudinal direction while the Poisson's ratio remains con- stant. The state equation with a shift-Hamiltonian operator matrix has been established in the previous work, which is limited to the Saint-Venant solution. Here, a complete rational analysis of the displacement and stress distributions in the beam is presented by exploring the eigensolutions that are usually covered up by the Saint-Venant prin- ciple. These solutions play a significant role in the local behavior of materials that is usually ignored in the conventional elasticity methods but possibly crucial to the mate- rial/structure failures. The analysis makes full use of the symplectic orthogonality of the eigensolutions. Two illustrative examples are presented to compare the displacement and stress results with those for homogenous materials, demonstrating the effects of material inhomogeneity.展开更多
Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that t...Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that the main results in the previously published papers are corollaries of the new theorems. Most of all we want to stress the method of proof. It is based on the connections between Pauli operator matrices and nonnegative Hamiltonian matrices.展开更多
The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In t...The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues. The latter group can be further divided into α-and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11371185,11101200 and 11361034)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111501110001)+1 种基金Major Subject of Natural Science Foundation of Inner Mongolia of China(Grant No.2013ZD01)Natural Science Foundation of Inner Mongolia of China(Grant No.2012MS0105)
文摘Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11361034 and 11371185)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111501110001)the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2012MS0105 and 2013ZD01 )
文摘A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.
基金supported by the National Natural Science Foundation of China (Nos. 11090333 and10972193)the Natural Science Foundation of Ningbo City of China (No. 2011A610077)
文摘Exact solutions for generally supported functionally graded plane beams are given within the framework of symplectic elasticity. The Young's modulus is assumed to exponentially vary along the longitudinal direction while the Poisson's ratio remains con- stant. The state equation with a shift-Hamiltonian operator matrix has been established in the previous work, which is limited to the Saint-Venant solution. Here, a complete rational analysis of the displacement and stress distributions in the beam is presented by exploring the eigensolutions that are usually covered up by the Saint-Venant prin- ciple. These solutions play a significant role in the local behavior of materials that is usually ignored in the conventional elasticity methods but possibly crucial to the mate- rial/structure failures. The analysis makes full use of the symplectic orthogonality of the eigensolutions. Two illustrative examples are presented to compare the displacement and stress results with those for homogenous materials, demonstrating the effects of material inhomogeneity.
基金Supported by Natural Science Foundation of China(Grant Nos.11361034,11371185,11101200)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111501110001)+1 种基金Major Subject of Natural Science Foundation of Inner Mongolia of China(Grant No.2013ZD01)Natural Science Foundation of Inner Mongolia of China(Grant No.2012MS0105)
文摘Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that the main results in the previously published papers are corollaries of the new theorems. Most of all we want to stress the method of proof. It is based on the connections between Pauli operator matrices and nonnegative Hamiltonian matrices.
基金Project Supported by National Natural Science Foundation of China(No.11371185,11361034)Major Subject of Natural Science Foundation of Inner Mongolia of China(No.2013ZD01)~~
基金the National Natural Science Foundation of China (Nos. 10725210 and 10432030) the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060335107)the Program for New Century Excellent Talents in University, MOE, China (No. NCET-05-05010)
文摘The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues. The latter group can be further divided into α-and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.