The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
This paper studies the problem of tracking control for a class of switched nonlinear systems with time-varying delay. Based on the average dwell-time and piecewise Lyapunov functional methods, a new exponential stabil...This paper studies the problem of tracking control for a class of switched nonlinear systems with time-varying delay. Based on the average dwell-time and piecewise Lyapunov functional methods, a new exponential stability criterion is obtained for the switched nonlinear systems. The designed output feedback H∞controller can be obtained by solving a set of linear matrix inequalities(LMIs).Moreover, the proposed method does not need that a common Lyapunov function exists for the switched systems, and the switching signal just depends on time. A simulation example is provided to demonstrate the effectiveness of the proposed design scheme.展开更多
This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using...This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.展开更多
The sufficient conditions of delay-dependent exponential stability for switched systems and robust exponential stability for uncertain switched systems with two time-delays are presented by using average dwell time me...The sufficient conditions of delay-dependent exponential stability for switched systems and robust exponential stability for uncertain switched systems with two time-delays are presented by using average dwell time method and free-weighting matrix method.The interaction between different time-delays is considered.The sufficient conditions do not need that every subsystem is stable.The designed methods of the switching law are also given.The sufficient conditions are given in the form of linear matrix inequalities that can be solved easily.The result is proven to be valid by the simulation at last.展开更多
This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach...This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
In this paper, the problem of sliding mode control (SMC) with passivity for a class of uncertain switched time-delay systems is studied. By means of the multiple Lyapunov functions techniques, a delay-dependent suff...In this paper, the problem of sliding mode control (SMC) with passivity for a class of uncertain switched time-delay systems is studied. By means of the multiple Lyapunov functions techniques, a delay-dependent sufficient condition for the existence of linear sliding surface of subsystem is deduced in which the solution to the switched sliding mode dynamics is robustly exponentially stable and passive under a state-based switching law. Moreover, the sliding mode controller is designed to drive the system trajectories onto the predefined sliding surface of subsystem in finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.展开更多
This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, mul...This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.展开更多
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
基金supported by National Natural Science Foundation of China(Nos.61473082,61273119,and 61104068)Six Talents Peaks Program of Jiangsu Province(No.2014-DZXX-003)the Fundamental Research Funds for the Central Universities(No.2242013R30006)
文摘This paper studies the problem of tracking control for a class of switched nonlinear systems with time-varying delay. Based on the average dwell-time and piecewise Lyapunov functional methods, a new exponential stability criterion is obtained for the switched nonlinear systems. The designed output feedback H∞controller can be obtained by solving a set of linear matrix inequalities(LMIs).Moreover, the proposed method does not need that a common Lyapunov function exists for the switched systems, and the switching signal just depends on time. A simulation example is provided to demonstrate the effectiveness of the proposed design scheme.
文摘This paper addresses the stability problem for a class of switched nonlinear time varying delay systems modeled by delay differential equations. By transforming the system representation under the arrow form and using a new constructed Lyapunov function,the aggregation techniques,the Borne-Gentina practical stability criterion associated with the properties, new delay-independent stability conditions of the considered systems are established. Compared with the existing results in this area, the obtained result is explicit, simple to use and allows us to avoid the problem of searching a common Lyapunov function. Finally, an example is provided, with numerical simulations,to demonstrate the effectiveness of the proposed method.
基金supported by the Program of 211 Innovation Engieering on Information in Xiamen University (2009-2011) the Aeronautical Science Foundation of China (No. 2009ZH68022)
文摘The sufficient conditions of delay-dependent exponential stability for switched systems and robust exponential stability for uncertain switched systems with two time-delays are presented by using average dwell time method and free-weighting matrix method.The interaction between different time-delays is considered.The sufficient conditions do not need that every subsystem is stable.The designed methods of the switching law are also given.The sufficient conditions are given in the form of linear matrix inequalities that can be solved easily.The result is proven to be valid by the simulation at last.
文摘This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 60774041)the Henan Province Natural Science Foundation(No. 072300410110)
文摘In this paper, the problem of sliding mode control (SMC) with passivity for a class of uncertain switched time-delay systems is studied. By means of the multiple Lyapunov functions techniques, a delay-dependent sufficient condition for the existence of linear sliding surface of subsystem is deduced in which the solution to the switched sliding mode dynamics is robustly exponentially stable and passive under a state-based switching law. Moreover, the sliding mode controller is designed to drive the system trajectories onto the predefined sliding surface of subsystem in finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.
基金supported by the National Basic Research Program of China (No.2007CB714006)
文摘This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.