Pneumatic conveying of coarse coal particles with various pipeline configurations and swirling intensities was investigated using a coupled computational fluid dynamics and discrete element method. A particle cluster ...Pneumatic conveying of coarse coal particles with various pipeline configurations and swirling intensities was investigated using a coupled computational fluid dynamics and discrete element method. A particle cluster agglomerated by the parallel-bond method was modeled to analyze the breakage of coarse coal particles. The numerical parameters, simulation conditions, and simulation results were experimentally validated. On analyzing total energy variation in the agglomerate during the breakage process, the results showed that downward fluctuation of the total particle energy was correlated with particle and wall col- lisions, and particle breakage showed a positive correlation with the energy difference. The correlation between the total energy variation of a particle cluster and particle breakage was also analyzed. Parti- cle integrity presented a fluctuating upward trend with pipe bend radius and increased with swirling number for most bend radii. The degree of particle breakage differed with pipeline bending direction and swirling intensity: in a horizontal bend, the bend radius and swirling intensity dominated the total energy variations: these effects were not observed in a vertical bend. The total energy of the particle cluster exiting a bend was generally positively correlated with the bend radius for all conditions and was independent of bending direction.展开更多
In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was use...In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was used to study the influence of the nozzle structure on the swirling intensity and nozzle discharge coefficient. Simulation results indicate that spreading angle of the swirling jet is greater than that of" the non-swirling jet, and the swirling intensity of the jet is strongly influenced by the length of the nozzle body but weakly by the number of tangential inlets. Rock breaking tests were conducted to evaluate the performance of the swirling jet. It is found that the swirling jet shows a lower threshold pressure to break the rock samples and could break rock more efficiently compared with the non-swirling jet.展开更多
The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation o...The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.展开更多
文摘Pneumatic conveying of coarse coal particles with various pipeline configurations and swirling intensities was investigated using a coupled computational fluid dynamics and discrete element method. A particle cluster agglomerated by the parallel-bond method was modeled to analyze the breakage of coarse coal particles. The numerical parameters, simulation conditions, and simulation results were experimentally validated. On analyzing total energy variation in the agglomerate during the breakage process, the results showed that downward fluctuation of the total particle energy was correlated with particle and wall col- lisions, and particle breakage showed a positive correlation with the energy difference. The correlation between the total energy variation of a particle cluster and particle breakage was also analyzed. Parti- cle integrity presented a fluctuating upward trend with pipe bend radius and increased with swirling number for most bend radii. The degree of particle breakage differed with pipeline bending direction and swirling intensity: in a horizontal bend, the bend radius and swirling intensity dominated the total energy variations: these effects were not observed in a vertical bend. The total energy of the particle cluster exiting a bend was generally positively correlated with the bend radius for all conditions and was independent of bending direction.
基金financial support from the Fundamental Research Funds for the Central Universities and the Natural Science Foundation of China (51179201)
文摘In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was used to study the influence of the nozzle structure on the swirling intensity and nozzle discharge coefficient. Simulation results indicate that spreading angle of the swirling jet is greater than that of" the non-swirling jet, and the swirling intensity of the jet is strongly influenced by the length of the nozzle body but weakly by the number of tangential inlets. Rock breaking tests were conducted to evaluate the performance of the swirling jet. It is found that the swirling jet shows a lower threshold pressure to break the rock samples and could break rock more efficiently compared with the non-swirling jet.
文摘The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.