Current researches have not yet found the effect law of the cutter parameters and machining parameters on the interference in gear slicing, the interference between the cutter and machined gear often happens because t...Current researches have not yet found the effect law of the cutter parameters and machining parameters on the interference in gear slicing, the interference between the cutter and machined gear often happens because the appropriate cutter parameters and machining parameters cannot be set, which reduces the gear machining accuracy. The relative position between the major flank face and edge-sweeping surface, distribution law of the interference area in forming process of edge-sweeping surface, and effect law of relative positions among edge-sweeping surfaces on the interference are studied by graphical analysis. The effect law of the cutter parameters and machining parameters on the interference is found. The effect law shows that the interference in gear slicing can be controlled when the relief angle measured on the top edge and feed of every rotation are chosen respectively larger than 9~ and smaller than 0.15 mrn/r. An internal helical gear is sliced with the spur slice cutter and the cutter parameters and machining parameters are set based on above the effect law. The machined gear is measured in Gear Measuring Center and the detection result shows that the comprehensive accuracy reaches GB/T Class 7, where some reach GB/T Class 6. The result can meet the gear machining accuracy requirement and shows that the effect law found is valid. The problem of the interference in gear slicing is solved and the gear machining accuracy can be improved.展开更多
Algorithms to generate a triangular or a quadrilateral interpolant with G^1-continuity are given in this paper for arbitrary scattered data with associated normal vectors over a prescribed triangular or quadrilateral ...Algorithms to generate a triangular or a quadrilateral interpolant with G^1-continuity are given in this paper for arbitrary scattered data with associated normal vectors over a prescribed triangular or quadrilateral decomposition. The interpolants are constructed with a general method to generate surfaces from moving Bezier curves under geometric constraints. With the algorithm, we may obtain interpolants in complete symbolic parametric forms, leading to a fast computation of the interpolant. A dynamic interpolation solid modelling software package DISM is implemented based on the algorithm which can be used to generate and manipulate solid objects in an interactive way.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51175376)
文摘Current researches have not yet found the effect law of the cutter parameters and machining parameters on the interference in gear slicing, the interference between the cutter and machined gear often happens because the appropriate cutter parameters and machining parameters cannot be set, which reduces the gear machining accuracy. The relative position between the major flank face and edge-sweeping surface, distribution law of the interference area in forming process of edge-sweeping surface, and effect law of relative positions among edge-sweeping surfaces on the interference are studied by graphical analysis. The effect law of the cutter parameters and machining parameters on the interference is found. The effect law shows that the interference in gear slicing can be controlled when the relief angle measured on the top edge and feed of every rotation are chosen respectively larger than 9~ and smaller than 0.15 mrn/r. An internal helical gear is sliced with the spur slice cutter and the cutter parameters and machining parameters are set based on above the effect law. The machined gear is measured in Gear Measuring Center and the detection result shows that the comprehensive accuracy reaches GB/T Class 7, where some reach GB/T Class 6. The result can meet the gear machining accuracy requirement and shows that the effect law found is valid. The problem of the interference in gear slicing is solved and the gear machining accuracy can be improved.
文摘Algorithms to generate a triangular or a quadrilateral interpolant with G^1-continuity are given in this paper for arbitrary scattered data with associated normal vectors over a prescribed triangular or quadrilateral decomposition. The interpolants are constructed with a general method to generate surfaces from moving Bezier curves under geometric constraints. With the algorithm, we may obtain interpolants in complete symbolic parametric forms, leading to a fast computation of the interpolant. A dynamic interpolation solid modelling software package DISM is implemented based on the algorithm which can be used to generate and manipulate solid objects in an interactive way.