Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper a...Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.展开更多
基金supported by National Basic Research Program of China(973Program)(No.2013CB228201)National Natural Science Foundation of China(No.60934005,No.51207018)
基金This study was financially supported by the National Important Basic Research and Development Planning Program(No.1999043206)the National Natural Science Foundation of China(No.40234051)+1 种基金the Special Plan of Science and Technology of the Ministry of Land and Resources(20010103)the"Trans-century Training Program for Outstanding Talents”Fund sponsored by the.Ministry of Education.
文摘Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.