The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the pre...The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.展开更多
A geopulse seismic system was implemented to obtain new information on underlying strata beneath the Yellow River Delta. However, owing to the shpping of sea floor and shallow water ( 〈 25 m), free surface-related ...A geopulse seismic system was implemented to obtain new information on underlying strata beneath the Yellow River Delta. However, owing to the shpping of sea floor and shallow water ( 〈 25 m), free surface-related multiples are conflicted with the flat primaries, which may instruct the interpreters in a wrong way and make wrong conclusions. Owing to the variation of multiple periods, standard anti-multiple techniques may lose their power, such as predictive deconvolution. Surface-related multiple elimination methods are introduced to attenuate the multiples based on the underlying waveequation principles. The results justified the method on the single-channel geopulse profile, revealing the real nature of the subsurface.展开更多
In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation o...In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.展开更多
Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers comple...Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers complementary illumination and a higher vertical resolution.However,crosstalk artifacts caused by unrelated multiples during reverse time migration(RTM)using multiples severely degrade the reliability and interpretation of the final migration images.Therefore,we proposed RTM using first-order receiver-side water-bottom-related multiples for eliminating crosstalk artifacts and enhancing vertical resolution.We first backward propagate the first-order receiver-side water-bottom-related multiples using a water-layer model,followed by saving the upper boundary wavefield.Then we produce the source wavefield using a seismic wavelet and the receiver wavefield by back-extrapolating the saved boundary.Finally,the cross-correlation imaging condition is applied to generate the final image.This method transforms the receiver-side multiples into primaries,followed by the conventional migration processing procedures.Numerical examples using synthetic datasets demonstrate that our method significantly enhances the imaging quality by eliminating crosstalk artifacts and improving the resolution.展开更多
浅水海域地震资料通常会有较为严重的鸣震等短周期多次波干扰,一般采用预测反褶积进行压制,但是在地质构造较复杂地区其效果并不理想。而表层相关多次波压制方法(SRME)(Surface related multiple elimination)方法,由于海底反射信息较差...浅水海域地震资料通常会有较为严重的鸣震等短周期多次波干扰,一般采用预测反褶积进行压制,但是在地质构造较复杂地区其效果并不理想。而表层相关多次波压制方法(SRME)(Surface related multiple elimination)方法,由于海底反射信息较差,很难压制浅水海底相关等短周期多次波。本文使用数据驱动的浅水多次波压制方法,该方法同时基于SRME褶积方式与多道预测算子,在浅水复杂构造区压制短周期多次波方面可以取得比预测反褶积更好的效果。在实际资料应用中,使用本文方法与预测反褶积组合的方式,其多次波压制效果更为理想,优于单独使用其中任何一种方法。展开更多
基金support of the National Natural Science Fundation of China (Nos. 41574105 and 41674118)the National Science and Technology Major Project of China (No. 2016ZX05027-002)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03)
文摘The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
基金The workis financially supported by the High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z339)Natural Science Foundation of Shandong Province(Grant No.Y2006E09)
文摘A geopulse seismic system was implemented to obtain new information on underlying strata beneath the Yellow River Delta. However, owing to the shpping of sea floor and shallow water ( 〈 25 m), free surface-related multiples are conflicted with the flat primaries, which may instruct the interpreters in a wrong way and make wrong conclusions. Owing to the variation of multiple periods, standard anti-multiple techniques may lose their power, such as predictive deconvolution. Surface-related multiple elimination methods are introduced to attenuate the multiples based on the underlying waveequation principles. The results justified the method on the single-channel geopulse profile, revealing the real nature of the subsurface.
基金sponsored by:the National Basic Research Program of China (973 Program) (2007CB209605)the National Natural Science Foundation of China (40974073)the National Hi-tech Research and Development Program of China (863 Program) (2009AA06Z206)
文摘In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.
基金partially funded by the National Natural Science Foundation of China(Grant No.41730425)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant No.DQJB20K42)the Institute of Geology and Geophysics,Chinese Academy of Sciences Project(Grant No.IGGCAS-2019031)。
文摘Surface-related multiples frequently propagate into the subsurface and contain abundant information on small reflection angles.Compared with the conventional migration of primaries,migration of multiples offers complementary illumination and a higher vertical resolution.However,crosstalk artifacts caused by unrelated multiples during reverse time migration(RTM)using multiples severely degrade the reliability and interpretation of the final migration images.Therefore,we proposed RTM using first-order receiver-side water-bottom-related multiples for eliminating crosstalk artifacts and enhancing vertical resolution.We first backward propagate the first-order receiver-side water-bottom-related multiples using a water-layer model,followed by saving the upper boundary wavefield.Then we produce the source wavefield using a seismic wavelet and the receiver wavefield by back-extrapolating the saved boundary.Finally,the cross-correlation imaging condition is applied to generate the final image.This method transforms the receiver-side multiples into primaries,followed by the conventional migration processing procedures.Numerical examples using synthetic datasets demonstrate that our method significantly enhances the imaging quality by eliminating crosstalk artifacts and improving the resolution.
文摘浅水海域地震资料通常会有较为严重的鸣震等短周期多次波干扰,一般采用预测反褶积进行压制,但是在地质构造较复杂地区其效果并不理想。而表层相关多次波压制方法(SRME)(Surface related multiple elimination)方法,由于海底反射信息较差,很难压制浅水海底相关等短周期多次波。本文使用数据驱动的浅水多次波压制方法,该方法同时基于SRME褶积方式与多道预测算子,在浅水复杂构造区压制短周期多次波方面可以取得比预测反褶积更好的效果。在实际资料应用中,使用本文方法与预测反褶积组合的方式,其多次波压制效果更为理想,优于单独使用其中任何一种方法。