本文研究了一种新的高频地波超视距雷达目标距离以及方位角超分辨问题.在该雷达系统中,各个发射阵元采用不同的发射载频,因此目标回波信号中存在目标距离与方位角的耦合,本文提出利用这种耦合关系,采用M U S IC(M u ltip le S igna l C ...本文研究了一种新的高频地波超视距雷达目标距离以及方位角超分辨问题.在该雷达系统中,各个发射阵元采用不同的发射载频,因此目标回波信号中存在目标距离与方位角的耦合,本文提出利用这种耦合关系,采用M U S IC(M u ltip le S igna l C lassifica tion)算法获得目标距离以及方位角的超分辩,从而提高在多目标环境下测距、测角精度.仿真结果验证了该方法的有效性.展开更多
OSMAR071 is the latest product of the OSMAR (ocean state monitor and analysis radar) series of high frequency surface wave radar (HFSWR), which was developed by the Radiowave Propagation Laboratory of Wuhan Univer...OSMAR071 is the latest product of the OSMAR (ocean state monitor and analysis radar) series of high frequency surface wave radar (HFSWR), which was developed by the Radiowave Propagation Laboratory of Wuhan University. It adopts a modified Barrick waveheight inversion model. The modifications are introduced to improve the model's performances under the effect of noises and interferences and in the case of broad beam radar detection. The two unknown coefficients in the modified model are figured out by fitting the HFSWR significant waveheight results to those output from a wave buoy located in the radiating coverage of the radar site. The model is applied to inverse the waveheights from radar data for the duration from Dec. 1st, 2008 to Feb. 25th, 2009, and then the radar waveheights are compared with the buoy measurements. Results show that the rms difference between radar-derived significant waveheights and those from the buoy is 0.38 m and the correlation coefficient between the two series is 0.66. This study describes OSMAR071 observation of significant waveheight with relatively satisfactory accuracy during about three months.展开更多
文摘本文研究了一种新的高频地波超视距雷达目标距离以及方位角超分辨问题.在该雷达系统中,各个发射阵元采用不同的发射载频,因此目标回波信号中存在目标距离与方位角的耦合,本文提出利用这种耦合关系,采用M U S IC(M u ltip le S igna l C lassifica tion)算法获得目标距离以及方位角的超分辩,从而提高在多目标环境下测距、测角精度.仿真结果验证了该方法的有效性.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2001AA631050)the National Natural Science Foundation of China (60571065)Open fund of State Key Laboratory of Offshore Marine Environment (Xiamen University)
文摘OSMAR071 is the latest product of the OSMAR (ocean state monitor and analysis radar) series of high frequency surface wave radar (HFSWR), which was developed by the Radiowave Propagation Laboratory of Wuhan University. It adopts a modified Barrick waveheight inversion model. The modifications are introduced to improve the model's performances under the effect of noises and interferences and in the case of broad beam radar detection. The two unknown coefficients in the modified model are figured out by fitting the HFSWR significant waveheight results to those output from a wave buoy located in the radiating coverage of the radar site. The model is applied to inverse the waveheights from radar data for the duration from Dec. 1st, 2008 to Feb. 25th, 2009, and then the radar waveheights are compared with the buoy measurements. Results show that the rms difference between radar-derived significant waveheights and those from the buoy is 0.38 m and the correlation coefficient between the two series is 0.66. This study describes OSMAR071 observation of significant waveheight with relatively satisfactory accuracy during about three months.