The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in ...The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is de- voted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30TM anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. ~I firstly brings in fo- cus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. ~II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In ~III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in ~IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.展开更多
High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy...High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.展开更多
For Ti-6Al-4V,a titanium alloy increasingly used in aerospace structure,selective laser melting(SLM)is an attractive additive manufacturing technology,which is attributed to its complex construction capability with hi...For Ti-6Al-4V,a titanium alloy increasingly used in aerospace structure,selective laser melting(SLM)is an attractive additive manufacturing technology,which is attributed to its complex construction capability with high accuracy and good surface quality.In order to obtain qualified mechanical properties,SLM parameters and post processing should be tailored for diverse service conditions.Fracture toughness and fatigue crack growth(FCG)behavior are critical characteristics for damage tolerance evaluation of such metallic structures,and they are affected by post processing technologies significantly.The objective of this study is to obtain the fracture toughness and fatigue crack growth behavior of Ti-6Al-4V manufactured by SLM,and to evaluate the influence of post-SLM thermomechanical treatment and surface machining.Fracture toughness and FCG tests were performed for SLM Ti-6Al-4V in three types of post processing status:as-built,heat treated and hot isostatically pressed(HIPed),respectively.Specimens with as-built and machined surface were tested.The microstructure and fractography were analyzed as well in order to investigate the relevance among manufacture process,microstructure and mechanical properties.The results demonstrate that as-built SLM Ti-6Al-4V presents poor ductility and FCG behavior due to martensitic microstructure and residual stresses.Both heat treatment and hot isostatic pressing improve the plane-stress fracture toughness and FCG performance considerably,while surface machining shows slight effect.展开更多
文摘The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is de- voted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30TM anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. ~I firstly brings in fo- cus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. ~II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In ~III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in ~IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.
基金Projects(50975237,51005184) supported by the National Natural Science Foundation of China
文摘High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.
基金supported by the Innovation Fund of Aircraft Strength Research Institute of China(No.16-025-03)
文摘For Ti-6Al-4V,a titanium alloy increasingly used in aerospace structure,selective laser melting(SLM)is an attractive additive manufacturing technology,which is attributed to its complex construction capability with high accuracy and good surface quality.In order to obtain qualified mechanical properties,SLM parameters and post processing should be tailored for diverse service conditions.Fracture toughness and fatigue crack growth(FCG)behavior are critical characteristics for damage tolerance evaluation of such metallic structures,and they are affected by post processing technologies significantly.The objective of this study is to obtain the fracture toughness and fatigue crack growth behavior of Ti-6Al-4V manufactured by SLM,and to evaluate the influence of post-SLM thermomechanical treatment and surface machining.Fracture toughness and FCG tests were performed for SLM Ti-6Al-4V in three types of post processing status:as-built,heat treated and hot isostatically pressed(HIPed),respectively.Specimens with as-built and machined surface were tested.The microstructure and fractography were analyzed as well in order to investigate the relevance among manufacture process,microstructure and mechanical properties.The results demonstrate that as-built SLM Ti-6Al-4V presents poor ductility and FCG behavior due to martensitic microstructure and residual stresses.Both heat treatment and hot isostatic pressing improve the plane-stress fracture toughness and FCG performance considerably,while surface machining shows slight effect.