针对高速列车弓网噪声,为降低主要由细长圆柱杆件构成的受电弓的气动噪声,建立三维圆柱绕流气动噪声分析模型,基于大涡模拟方法、声类比理论模拟圆柱杆件的流场特征,分析远场气动噪声频谱特性与分布规律,并对圆柱杆件表面作球缺型凹坑处...针对高速列车弓网噪声,为降低主要由细长圆柱杆件构成的受电弓的气动噪声,建立三维圆柱绕流气动噪声分析模型,基于大涡模拟方法、声类比理论模拟圆柱杆件的流场特征,分析远场气动噪声频谱特性与分布规律,并对圆柱杆件表面作球缺型凹坑处理,分析表面处理方案的降噪效果。数值结果表明,来流与圆柱轴向所在平面法向的气动噪声受升力波动影响,声压级最大;圆柱来流方向前后气动噪声受阻力波动影响,声压级最小。圆柱表面球缺型凹坑处理方式可以有效降低圆柱杆件远场R=5 m处最大声压级,凹坑加密,降噪效果更好,优化模型II-1、II-2和II-3在R=5 m处最大声压级分别降低1.5 d B、1.9 d B和2.4 d B。相关结果可为高速列车噪声控制提供参考。展开更多
文摘针对高速列车弓网噪声,为降低主要由细长圆柱杆件构成的受电弓的气动噪声,建立三维圆柱绕流气动噪声分析模型,基于大涡模拟方法、声类比理论模拟圆柱杆件的流场特征,分析远场气动噪声频谱特性与分布规律,并对圆柱杆件表面作球缺型凹坑处理,分析表面处理方案的降噪效果。数值结果表明,来流与圆柱轴向所在平面法向的气动噪声受升力波动影响,声压级最大;圆柱来流方向前后气动噪声受阻力波动影响,声压级最小。圆柱表面球缺型凹坑处理方式可以有效降低圆柱杆件远场R=5 m处最大声压级,凹坑加密,降噪效果更好,优化模型II-1、II-2和II-3在R=5 m处最大声压级分别降低1.5 d B、1.9 d B和2.4 d B。相关结果可为高速列车噪声控制提供参考。