针对铝型材表面缺陷种类多、尺度差异大、小目标容易漏检等问题,提出了KCC-YOLOv5——一种基于YOLOv5s改进的铝型材表面小缺陷检测模型。首先利用IoU(intersection over union)-K-means++算法代替K-means算法聚类锚框,获得最贴合铝型材...针对铝型材表面缺陷种类多、尺度差异大、小目标容易漏检等问题,提出了KCC-YOLOv5——一种基于YOLOv5s改进的铝型材表面小缺陷检测模型。首先利用IoU(intersection over union)-K-means++算法代替K-means算法聚类锚框,获得最贴合铝型材表面缺陷的锚框,提高小目标锚框的质量;其次,提出全局注意力模块C3C2F,并引入主干层,在减少参数量的同时增强小目标的语义信息和全局感知能力;最后将颈部最近邻插值上采样方式换为轻量级上采样算子CARAFE(content-aware reassembly of features),充分保留上采样特征图的小目标信息。实验结果表明,改进模型KCCYOLOv5的均值平均精度为94.6%,相比于YOLOv5s提高了2.8个百分点,小目标漆泡和脏点的平均精度分别提高了5.2和12.4个百分点。KCC-YOLOv5模型在保持大目标检测精度小幅度提升的同时显著提升了小目标的检测精度。展开更多
文摘针对铝型材表面缺陷种类多、尺度差异大、小目标容易漏检等问题,提出了KCC-YOLOv5——一种基于YOLOv5s改进的铝型材表面小缺陷检测模型。首先利用IoU(intersection over union)-K-means++算法代替K-means算法聚类锚框,获得最贴合铝型材表面缺陷的锚框,提高小目标锚框的质量;其次,提出全局注意力模块C3C2F,并引入主干层,在减少参数量的同时增强小目标的语义信息和全局感知能力;最后将颈部最近邻插值上采样方式换为轻量级上采样算子CARAFE(content-aware reassembly of features),充分保留上采样特征图的小目标信息。实验结果表明,改进模型KCCYOLOv5的均值平均精度为94.6%,相比于YOLOv5s提高了2.8个百分点,小目标漆泡和脏点的平均精度分别提高了5.2和12.4个百分点。KCC-YOLOv5模型在保持大目标检测精度小幅度提升的同时显著提升了小目标的检测精度。