Healthcare organizations rely on patients’feedback and experiences to evaluate their performance and services,thereby allowing such organizations to improve inadequate services and address any shortcomings.According ...Healthcare organizations rely on patients’feedback and experiences to evaluate their performance and services,thereby allowing such organizations to improve inadequate services and address any shortcomings.According to the literature,social networks and particularly Twitter are effective platforms for gathering public opinions.Moreover,recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors,including healthcare.The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus.The authors collected 12,400 tweets from Arabic patients discussing patient experiences related to healthcare organizations in Saudi Arabia from 1 January 2008 to 29 January 2022.The tweets were labeled according to sentiment(positive or negative)and sector(public or private),and thereby the Hospital Patient Experiences in Saudi Arabia(HoPE-SA)dataset was produced.A simple statistical analysis was conducted to examine differences in patient views of healthcare sectors.The authors trained five models to distinguish sentiments in tweets automatically with the following schemes:a transformer-based model fine-tuned with deep learning architecture and a transformer-based model fine-tuned with simple architecture,using two different transformer-based embeddings based on Bidirectional Encoder Representations from Transformers(BERT),Multi-dialect Arabic BERT(MAR-BERT),and multilingual BERT(mBERT),as well as a pretrained word2vec model with a support vector machine classifier.This is the first study to investigate the use of a bidirectional long short-term memory layer followed by a feedforward neural network for the fine-tuning of MARBERT.The deep-learning fine-tuned MARBERT-based model—the authors’best-performing model—achieved accuracy,micro-F1,and macro-F1 scores of 98.71%,98.73%,and 98.63%,respectively.展开更多
目前变压器油中气体浓度预测普遍采用灰色模型,但灰色模型的使用存在一定局限性。为提高预测的精度和可靠性,应用最小二乘支持向量机(least squares support vector machine,LS-SVM)理论建立了同时预测变压器油中7种主要特征气体(氢气...目前变压器油中气体浓度预测普遍采用灰色模型,但灰色模型的使用存在一定局限性。为提高预测的精度和可靠性,应用最小二乘支持向量机(least squares support vector machine,LS-SVM)理论建立了同时预测变压器油中7种主要特征气体(氢气、甲烷、乙烷、乙烯、乙炔、一氧化碳和二氧化碳)的预测模型。该模型既综合考虑了气体之间的相互影响,又充分发挥了LS-SVM解决有限样本问题的优势, 具有较高的预测精度和泛化能力。实例分析验证了该模型的有效性。展开更多
文摘Healthcare organizations rely on patients’feedback and experiences to evaluate their performance and services,thereby allowing such organizations to improve inadequate services and address any shortcomings.According to the literature,social networks and particularly Twitter are effective platforms for gathering public opinions.Moreover,recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors,including healthcare.The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus.The authors collected 12,400 tweets from Arabic patients discussing patient experiences related to healthcare organizations in Saudi Arabia from 1 January 2008 to 29 January 2022.The tweets were labeled according to sentiment(positive or negative)and sector(public or private),and thereby the Hospital Patient Experiences in Saudi Arabia(HoPE-SA)dataset was produced.A simple statistical analysis was conducted to examine differences in patient views of healthcare sectors.The authors trained five models to distinguish sentiments in tweets automatically with the following schemes:a transformer-based model fine-tuned with deep learning architecture and a transformer-based model fine-tuned with simple architecture,using two different transformer-based embeddings based on Bidirectional Encoder Representations from Transformers(BERT),Multi-dialect Arabic BERT(MAR-BERT),and multilingual BERT(mBERT),as well as a pretrained word2vec model with a support vector machine classifier.This is the first study to investigate the use of a bidirectional long short-term memory layer followed by a feedforward neural network for the fine-tuning of MARBERT.The deep-learning fine-tuned MARBERT-based model—the authors’best-performing model—achieved accuracy,micro-F1,and macro-F1 scores of 98.71%,98.73%,and 98.63%,respectively.