期刊文献+
共找到581篇文章
< 1 2 30 >
每页显示 20 50 100
短期负荷预测的支持向量机方法研究 被引量:277
1
作者 李元诚 方廷健 于尔铿 《中国电机工程学报》 EI CSCD 北大核心 2003年第6期55-59,共5页
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作... 提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。 展开更多
关键词 短期负荷预测 支持向量机 电力系统 神经网络 人工智能
下载PDF
基于支持向量机回归的光伏发电出力预测 被引量:130
2
作者 栗然 李广敏 《中国电力》 CSCD 北大核心 2008年第2期74-78,共5页
建立总峰瓦值为30MW的光伏电站数学模型,并且基于保定地区气象资料以及美国国家航空和宇航局(NASA)提供的保定地区太阳辐射数据,模拟得到该光伏发电系统出力数据。分析光伏系统出力特性以及影响光伏出力因素。根据影响光伏出力的诸多因... 建立总峰瓦值为30MW的光伏电站数学模型,并且基于保定地区气象资料以及美国国家航空和宇航局(NASA)提供的保定地区太阳辐射数据,模拟得到该光伏发电系统出力数据。分析光伏系统出力特性以及影响光伏出力因素。根据影响光伏出力的诸多因子的复杂性和非线性,决定预报因子与预报对象间的非线性关系,建立光伏系统出力的支持向量机(SVM)回归模型,并进行相应的预测。预测结果表明,支持向量机回归(SVR)方法为解决光伏系统出力的预测提供了一种可行路径。 展开更多
关键词 光伏并网系统 支持向量机(svm) 非线性回归 光伏出力预测
下载PDF
基于主动学习和半监督学习的多类图像分类 被引量:74
3
作者 陈荣 曹永锋 孙洪 《自动化学报》 EI CSCD 北大核心 2011年第8期954-962,共9页
多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非... 多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非常有限.本文将基于最优标号和次优标号(Best vs second-best,BvSB)的主动学习和带约束条件的自学习(Constrained self-training,CST)引入到基于支持向量机(Support vector machine,SVM)分类器的图像分类算法中,提出了一种新的图像分类方法.通过BvSB主动学习去挖掘那些对当前分类器模型最有价值的样本进行人工标注,并借助CST半监督学习进一步利用样本集中大量的未标注样本,使得在花费较小标注代价情况下,能够获得良好的分类性能.将新方法与随机样本选择、基于熵的不确定性采样主动学习算法以及BvSB主动学习方法进行了性能比较.对3个光学图像集及1个SAR图像集分类问题的实验结果显示,新方法能够有效地减少分类器训练时所需的人工标注样本的数量,并获得较高的准确率和较好的鲁棒性. 展开更多
关键词 主动学习 半监督学习 支持向量机 图像分类
下载PDF
基于混沌优化算法的支持向量机参数选取方法 被引量:55
4
作者 袁小芳 王耀南 《控制与决策》 EI CSCD 北大核心 2006年第1期111-113,117,共4页
支持向量机(SVM)的参数取值决定了其学习性能和泛化能力.对此,将SVM参数的选取看作参数的组合优化,建立组合优化的目标函数,采用变尺度混沌优化算法来搜索最优目标函数值.混沌优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型... 支持向量机(SVM)的参数取值决定了其学习性能和泛化能力.对此,将SVM参数的选取看作参数的组合优化,建立组合优化的目标函数,采用变尺度混沌优化算法来搜索最优目标函数值.混沌优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌优化算法是选取SVM参数的有效方法,应用到函数逼近时具有优良的性能. 展开更多
关键词 机器学习 支持向量机 混沌优化 参数选取
下载PDF
基于核的K-均值聚类 被引量:46
5
作者 孔锐 张国宣 +1 位作者 施泽生 郭立 《计算机工程》 CAS CSCD 北大核心 2004年第11期12-13,80,共3页
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时... 将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。 展开更多
关键词 核K-均值聚类 K-均值聚类 核函数 支持向量机
下载PDF
基于CNN-SVM的深度卷积神经网络轴承故障识别研究 被引量:70
6
作者 胡晓依 荆云建 +1 位作者 宋志坤 侯银庆 《振动与冲击》 EI CSCD 北大核心 2019年第18期173-178,共6页
针对传统智能诊断方法过分依赖于信号处理和专家经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合SVM分类器搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。从原始实测轴承振动信号出发... 针对传统智能诊断方法过分依赖于信号处理和专家经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合SVM分类器搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。从原始实测轴承振动信号出发,模型逐层学习实现特征提取与故障识别,引入批量归一化、Dropout处理并改进模型分类器来提升轴承故障识别准确率、模型收敛速度和泛化能力。实验结果表明,优化后的深度学习模型可快速准确地提取轴承故障特征,针对不同类型、不同损伤程度的轴承可实现99%的识别准确率,并且模型有较强的泛化能力和强化学习能力。 展开更多
关键词 卷积神经网络 支持向量机 振动信号 故障识别
下载PDF
基于最小二乘支持向量机的短期负荷预测 被引量:60
7
作者 耿艳 韩学山 韩力 《电网技术》 EI CSCD 北大核心 2008年第18期72-76,共5页
提出了结合粗糙集(rough sets,RS)理论和遗传算法(genetic algorithm,GA)的最小二乘支持向量机(least squares support vector machines,LS-SVM)短期负荷预测模型和算法。由于影响负荷预测精度的因素众多,该模型采用RS理论进行历史数据... 提出了结合粗糙集(rough sets,RS)理论和遗传算法(genetic algorithm,GA)的最小二乘支持向量机(least squares support vector machines,LS-SVM)短期负荷预测模型和算法。由于影响负荷预测精度的因素众多,该模型采用RS理论进行历史数据的预处理,对各条件属性进行约简分析。属性约简采用GA进行寻优,以确定与负荷密切相关的因素,作为LS-SVM的有效输入变量。在预测过程中,通过GA对LS-SVM的模型参数进行自适应寻优,从而提高负荷预测精度,避免LS-SVM对经验的依赖以及预测过程中对模型参数的盲目选择。采用上述方法对山东电网负荷进行了预测分析,结果证明了该方法的有效性。 展开更多
关键词 电力系统 短期负荷预测 支持向量机 粗糙集 遗传算法
下载PDF
多类支持向量机算法综述 被引量:33
8
作者 黄勇 郑春颖 宋忠虎 《计算技术与自动化》 2005年第4期61-63,共3页
传统的支持向量机是基于两类问题提出的,如何将其有效的推广至多类问题仍是一个有待研究的问题。本文中作者致力于对现有的几种较有成效的多类支持向量机做一介绍,并比较其优劣,以期对研究者以后的研究能有所启发。
关键词 支持向量机 多类 有向无环图 纠错编码支持向量机
下载PDF
基于支持向量机的个人信用评估模型及最优参数选择研究 被引量:47
9
作者 肖文兵 费奇 《系统工程理论与实践》 EI CSCD 北大核心 2006年第10期73-79,共7页
运用基于支持向量机理论试图建立一个新的个人信用评估预测方法,以期取得更好的预测分类能力.为了达到这个目标及保证可靠性,研究中使用网格5-折交叉确认来寻找不同核函数的最优参数.为了进一步评价SVM分类准确性,我们在本文最后对SVM... 运用基于支持向量机理论试图建立一个新的个人信用评估预测方法,以期取得更好的预测分类能力.为了达到这个目标及保证可靠性,研究中使用网格5-折交叉确认来寻找不同核函数的最优参数.为了进一步评价SVM分类准确性,我们在本文最后对SVM方法与线性判别分析,Logistic回归分析,最近邻,分类回归树及神经网络进行了比较,结果表明,SVM有很好的预测效果. 展开更多
关键词 信用评估 支持向量机(svm) 神经网络(NN) 5-折交叉确认
原文传递
支持向量机在短期负荷预测中的应用概况 被引量:53
10
作者 王奔 冷北雪 +2 位作者 张喜海 单翀皞 从振 《电力系统及其自动化学报》 CSCD 北大核心 2011年第4期115-121,共7页
全面总结了支持向量机(SVM)在短期负荷预测中的应用概况,并从SVM的原理出发,对比人工神经网络方法,从本质上阐述了SVM方法在短期负荷预测中应用的优越性。同时针对SVM在应用中存在的问题,包括数据预处理、核函数构造及选取和参数优化的... 全面总结了支持向量机(SVM)在短期负荷预测中的应用概况,并从SVM的原理出发,对比人工神经网络方法,从本质上阐述了SVM方法在短期负荷预测中应用的优越性。同时针对SVM在应用中存在的问题,包括数据预处理、核函数构造及选取和参数优化的方法,做出分析,并归纳了现行的解决方法。从SVM算法用于负荷预测的机理及提高预测精度和速度的角度,对于一系列SVM的改进方法,全面地进行了归纳,并提出需进一步探讨的关键问题。最后对基于SVM的短期负荷预测所需注意的关键问题做出总结,并提出建议。 展开更多
关键词 支持向量机 人工神经网络 短期负荷预测 数据预处理 核函数 参数优化 混合预测方法
下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
11
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子群优化算法(PSO) 支持向量机(svm) 优化 双螺旋分类 评价
下载PDF
基于经验模态分解和遗传支持向量机的多尺度大坝变形预测 被引量:50
12
作者 张豪 许四法 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2011年第S2期3681-3688,共8页
利用经验模态分解算法分解大坝变形数据,得到不同物理特征尺度的变形分量,分析各变形分量特征及其相关影响因素。针对各变形分量的特点,分别建立基于GA-SVM的各变形分量预测模型,将各分量预测模型相加,最终构建基于经验模态分解和支持... 利用经验模态分解算法分解大坝变形数据,得到不同物理特征尺度的变形分量,分析各变形分量特征及其相关影响因素。针对各变形分量的特点,分别建立基于GA-SVM的各变形分量预测模型,将各分量预测模型相加,最终构建基于经验模态分解和支持向量机的多尺度变形预测模型。由大坝变形数据的经验模态分解实例分析,证实经验模态分解算法能有效对大坝变形数据进行多尺度分解,由经验模态分解算法分解得到的各变形分量其物理特征更加显著,更易于各变形分量影响因素分析和变形模型建立,因此,针对各变形分量的特点所建立的GA-SVM的各变形分量模型具有较高精度。基于经验模态分解和支持向量机的多尺度变形预测模型由各分量预测模型相加而得,能充分挖掘大坝变形中隐含的多种内在规律,能同时在不同特征尺度上进行大坝变形预测。通过对多尺度大坝变形预测模型和多元回归、时间序列分析、GM(1,4)、BP网络和GA-SVM大坝变形预测模型进行精度对比,证实基于经验模态分解和支持向量机的多尺度变形预测模型是一种精度较高的大坝变形预测新方法。 展开更多
关键词 水利工程 经验模态分解 支持向量机 遗传算法 多尺度 变形预测
下载PDF
SVM在多源遥感图像分类中的应用研究 被引量:42
13
作者 何灵敏 沈掌泉 +1 位作者 孔繁胜 刘震科 《中国图象图形学报》 CSCD 北大核心 2007年第4期648-654,共7页
在利用遥感图像进行土地利用/覆盖分类过程中,可采用以下两种途径来提高分类精度:一是通过增加有利于分类的数据源,引入地理辅助数据和归一化植被指数(NDVI)来进行多源信息融合;二是选择更好的分类方法,例如支持向量机(SVM)学习方法,由... 在利用遥感图像进行土地利用/覆盖分类过程中,可采用以下两种途径来提高分类精度:一是通过增加有利于分类的数据源,引入地理辅助数据和归一化植被指数(NDVI)来进行多源信息融合;二是选择更好的分类方法,例如支持向量机(SVM)学习方法,由于该方法克服了最大似然法和神经网络的弱点,非常适合高维、复杂的小样本多源数据的分类。为了提高多源遥感图像分类的精度,还研究了支持向量机在遥感图像分类中模型的选择,包括多类模型和核函数的选择。分类结果表明,支持向量机比传统的分类方法具有更高的精度,尤其是基于径向基核函数和一对一多类方法的支持向量机模型更适合多源遥感图像分类,因此,基于支持向量机的多源土地利用/覆盖分类能大大提高分类精度。 展开更多
关键词 支持向量机 分类 多源数据 模型选择
下载PDF
滑坡灾害空间预测支持向量机模型及其应用 被引量:41
14
作者 戴福初 姚鑫 谭国焕 《地学前缘》 EI CAS CSCD 北大核心 2007年第6期153-159,共7页
随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量... 随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。 展开更多
关键词 滑坡 空间预测 支持向量机 地理信息系统
下载PDF
基于小波支持向量机的非线性组合预测方法研究 被引量:26
15
作者 李元诚 李波 方廷健 《信息与控制》 CSCD 北大核心 2004年第3期303-306,324,共5页
基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构... 基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性. 展开更多
关键词 小波 支持向量机 核函数 非线性组合预测
下载PDF
基于负荷混沌特性和最小二乘支持向量机的短期负荷预测 被引量:34
16
作者 王德意 杨卓 杨国清 《电网技术》 EI CSCD 北大核心 2008年第7期66-71,共6页
以负荷时间序列的混沌特性为基础,结合混沌时间序列的相空间重构理论和支持向量机的回归理论建立了一种基于负荷混沌特性和最小二乘支持向量机的短期负荷预测模型。首先将原始负荷数据进行相空间重构,形成相点序列,然后选择与当前相点... 以负荷时间序列的混沌特性为基础,结合混沌时间序列的相空间重构理论和支持向量机的回归理论建立了一种基于负荷混沌特性和最小二乘支持向量机的短期负荷预测模型。首先将原始负荷数据进行相空间重构,形成相点序列,然后选择与当前相点最邻近的相点作为此负荷预测模型的训练样本,经过训练寻求决策函数后就可以求出包含预测点的相点,最后还原此相点得出预测值。通过与BP神经网络的预测结果进行比较,证明了该模型在短期负荷预测中的有效性。 展开更多
关键词 混沌特性 相空间重构 支持向量机(svm) 回归 最小二乘支持向量机(LS—svm) 短期负荷预测
下载PDF
一种改进的支持向量机的文本分类算法 被引量:37
17
作者 巩知乐 张德贤 胡明明 《计算机仿真》 CSCD 北大核心 2009年第7期164-167,共4页
在文本分类中,应用支持向量机(SVM)算法能使分类在小样本的条件下具有良好的泛化能力。但支持向量机的参数取值决定了其学习性能和泛化能力。为提高支持向量机算法的性能,提出了一种采用免疫算法对支持向量机参数进行优化的文本分类算法... 在文本分类中,应用支持向量机(SVM)算法能使分类在小样本的条件下具有良好的泛化能力。但支持向量机的参数取值决定了其学习性能和泛化能力。为提高支持向量机算法的性能,提出了一种采用免疫算法对支持向量机参数进行优化的文本分类算法(IA-SVM)。算法减少了对支持向量机参数选择的盲目性,提高了SVM的预测精度。实验表明,IA-SVM算法在文本分类问题上明显提高了分类正确率,学习速度也有提高。 展开更多
关键词 免疫算法 支持向量机 文本分类
下载PDF
结合纹理的SVM遥感影像分类研究 被引量:34
18
作者 陈波 张友静 陈亮 《测绘工程》 CSCD 2007年第5期23-27,共5页
针对传统统计模式识别分类方法分类精度不高,分类时未加入像元灰度的空间分布和结构特征以及分类时样本不足等缺陷,采用一种结合纹理的支持向量机(SVM)遥感图像分类方法。该方法在对Landsat7 ETM遥感影像进行纹理特征提取的基础上,构建... 针对传统统计模式识别分类方法分类精度不高,分类时未加入像元灰度的空间分布和结构特征以及分类时样本不足等缺陷,采用一种结合纹理的支持向量机(SVM)遥感图像分类方法。该方法在对Landsat7 ETM遥感影像进行纹理特征提取的基础上,构建了结合纹理的SVM分类模型。以河南省汝阳县为试验区,利用此模型对该区域的土地利用类型进行分类研究,并将分类结果与最大似然法和单源数据(光谱)SVM分类结果进行定性和定量比较分析。研究结果表明:该方法能够有效地解决单数据源分类效果破碎、分类精度不高等问题;对高维输入向量具有较高的推广能力;总精度达到90%,比单源信息的SVM分类法提高了6%,而与最大似然法相比,总精度提高了近9%,取得了良好的效果。 展开更多
关键词 纹理 支持向量机(svm) 遥感影像分类 精度分析
下载PDF
融合历史数据和实时影响因素的精细化负荷预测 被引量:37
19
作者 席雅雯 吴俊勇 +2 位作者 石琛 朱孝文 蔡蓉 《电力系统保护与控制》 EI CSCD 北大核心 2019年第1期80-87,共8页
随着智能电网技术的飞速发展,对负荷预测的精度提出了越来越高的要求。融合负荷、天气等多源数据,提出了一种基于数据融合的支持向量机精细化负荷预测方法。首先对负荷历史数据进行聚类分析,将运行日分成六类。然后将负荷数据和温度、... 随着智能电网技术的飞速发展,对负荷预测的精度提出了越来越高的要求。融合负荷、天气等多源数据,提出了一种基于数据融合的支持向量机精细化负荷预测方法。首先对负荷历史数据进行聚类分析,将运行日分成六类。然后将负荷数据和温度、湿度等天气数据进行融合,针对六类聚类结果分别建立基于数据融合的支持向量机精细化负荷预测模型,并对模型参数进行全局优化。采用不同的预测模型对浙江省某地级市2013年的负荷进行预测,结果表明所提出的负荷预测方法的预测精度明显高于传统的负荷预测方法的预测精度。 展开更多
关键词 负荷预测 数据融合 支持向量机 预测精度
下载PDF
基于SVM的溶洞顶板安全厚度智能预测模型 被引量:33
20
作者 王勇 乔春生 +1 位作者 孙彩红 刘开云 《岩土力学》 EI CAS CSCD 北大核心 2006年第6期1000-1004,共5页
以某岩溶隧道为背景,采用二维弹塑性有限元方法对隧道开挖进行数值模拟计算,分析了隧道底部溶洞顶板安全厚度的影响因素,用支持向量机方法得出了能综合体现各影响因素的溶洞顶板安全厚度预测模型,并和多元线性回归得到的预测模型进行对... 以某岩溶隧道为背景,采用二维弹塑性有限元方法对隧道开挖进行数值模拟计算,分析了隧道底部溶洞顶板安全厚度的影响因素,用支持向量机方法得出了能综合体现各影响因素的溶洞顶板安全厚度预测模型,并和多元线性回归得到的预测模型进行对比。计算结果表明,支持向量机预测模型较之多元线性回归模型,不但具有方便快捷的优点,而且具有更高的预测精度。 展开更多
关键词 岩溶隧道 有限元 安全厚度 支持向量机 预测模型
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部