Support vector machine (SVM) is an important classi- fication tool in the pattern recognition and machine learning community, but its training is a time-consuming process. To deal with this problem, we propose a nov...Support vector machine (SVM) is an important classi- fication tool in the pattern recognition and machine learning community, but its training is a time-consuming process. To deal with this problem, we propose a novel method to mine the useful information about classification hidden in the training sample for improving the training algorithm, and every training point is as- signed to a value that represents the classification information, respectively, where training points with the higher values are cho- sen as candidate support vectors for SVM training. The classifica- tion information value for a training point is computed based on the classification accuracy of an appropriate hyperplane for the training sample, where the hyperplane goes through the mapped target of the training point in feature space defined by a kernel fimction. Experimental results on various benchmark datasets show the effectiveness of our algorithm.展开更多
将气候预测中常用的74项环流特征量进行归一化处理后,与郑州市冬季气温进行相关普查,利用SVM(SupportVectorM ach ine)两类分类方法,同时考虑气温的年代际变化,建立郑州冬季温度距平趋势预测推理模型,并对因子个数多少和年代际变化对预...将气候预测中常用的74项环流特征量进行归一化处理后,与郑州市冬季气温进行相关普查,利用SVM(SupportVectorM ach ine)两类分类方法,同时考虑气温的年代际变化,建立郑州冬季温度距平趋势预测推理模型,并对因子个数多少和年代际变化对预测模型的影响进行了试验。试验结果表明:用25个和15个因子分别建模时,产生最优模型时样本平均Ts评分均为56%,但后者预报准确率为75%,较前者提高了10%。用20世纪50年代和60年代做试验集,效果较好,产生最优模型时的样本Ts评分和预报准确率较高;用90年代做试验集,效果较差。展开更多
基金Supported by the National Natural Science Foundation of China (61070137,60933009)the Science and Technology Research Development Program in Shaanxi Province of China (2009K01-56)
文摘Support vector machine (SVM) is an important classi- fication tool in the pattern recognition and machine learning community, but its training is a time-consuming process. To deal with this problem, we propose a novel method to mine the useful information about classification hidden in the training sample for improving the training algorithm, and every training point is as- signed to a value that represents the classification information, respectively, where training points with the higher values are cho- sen as candidate support vectors for SVM training. The classifica- tion information value for a training point is computed based on the classification accuracy of an appropriate hyperplane for the training sample, where the hyperplane goes through the mapped target of the training point in feature space defined by a kernel fimction. Experimental results on various benchmark datasets show the effectiveness of our algorithm.
文摘将气候预测中常用的74项环流特征量进行归一化处理后,与郑州市冬季气温进行相关普查,利用SVM(SupportVectorM ach ine)两类分类方法,同时考虑气温的年代际变化,建立郑州冬季温度距平趋势预测推理模型,并对因子个数多少和年代际变化对预测模型的影响进行了试验。试验结果表明:用25个和15个因子分别建模时,产生最优模型时样本平均Ts评分均为56%,但后者预报准确率为75%,较前者提高了10%。用20世纪50年代和60年代做试验集,效果较好,产生最优模型时的样本Ts评分和预报准确率较高;用90年代做试验集,效果较差。