期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
面向节点分类的图神经网络节点嵌入增强模型 被引量:3
1
作者 曾菊香 王平辉 +3 位作者 丁益东 兰林 蔡林熹 管晓宏 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第2期219-225,共7页
考虑到实际的图结构往往是有噪的,可能包含实际不存在的边或者遗漏节点间实际存在的部分边,提出可微分相似度模型(DSM).通过挖掘节点间隐藏关系增强节点嵌入,以提高节点分类的准确度. DSM基于普通图神经网络方法(GNN)得到各节点的基础表... 考虑到实际的图结构往往是有噪的,可能包含实际不存在的边或者遗漏节点间实际存在的部分边,提出可微分相似度模型(DSM).通过挖掘节点间隐藏关系增强节点嵌入,以提高节点分类的准确度. DSM基于普通图神经网络方法(GNN)得到各节点的基础表征,根据节点表征相似度为目标节点选出相似节点集合,结合相似节点集合的基础表征对目标节点进行嵌入表征增强.在数学上,DSM是可微分的,可以将DSM作为插件与任意GNN相结合,以端到端的方式进行训练. DSM具有挖掘隐藏连接关系的能力,能促使GNNs学习到更具辨识性和鲁棒性的节点表征.基于最常用的多个公开的节点分类数据集,开展实验验证.结果表明,将已有GNNs与DSM结合能显著提升分类准确度,其中GAT-DSM相对GAT在数据集Cora和Citeseer上分别取得了2.9%、3.5%的提升. 展开更多
关键词 节点分类 有监督节点分类 图神经网络 神经网络 深度学习
下载PDF
基于数据与特征增强的自监督图表示学习方法
2
作者 许云峰 范贺荀 《计算机工程与应用》 CSCD 北大核心 2024年第17期148-157,共10页
图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的... 图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的基础上进行增强。同时,利用残差融合机制和无偏特征增强方法,在保证特征有效性的同时进一步减少增强样本的偏差。此外,在对比部分估计负样本为真的概率,并使用权重来度量负样本的硬度和相似度。通过在3个公开数据集上实验证明,在节点分类的下游任务中表现不仅优于当前最先进的无监督方法,而且还在多数任务中超过了以往的有监督方法。 展开更多
关键词 自监督学习 图对比学习 特征增强 节点分类 图表示学习
下载PDF
基于无负样本损失和自适应增强的图对比学习
3
作者 周天琪 杨艳 +2 位作者 张继杰 殷少伟 郭增强 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第2期259-266,共8页
针对图对比学习方法中对输入图进行随机增强和须利用负样本构造损失的问题,提出基于无负样本损失和自适应增强的图对比学习框架.该框架利用输入图中节点度的中心性进行自适应增强以生成2个视图,避免随机增强对重要的节点和边进行删除从... 针对图对比学习方法中对输入图进行随机增强和须利用负样本构造损失的问题,提出基于无负样本损失和自适应增强的图对比学习框架.该框架利用输入图中节点度的中心性进行自适应增强以生成2个视图,避免随机增强对重要的节点和边进行删除从而影响生成视图的质量,以提高框架的鲁棒性.利用相同权重编码器网络得到2个视图的嵌入矩阵,无须进行指定.利用基于互相关的损失函数指导框架学习,该损失函数不依赖于非对称神经网络架构,无须用负样本构造损失函数,从而避免在图的情况下难以定义的负样本变得更具有挑战性,以及负样本构造损失会增大计算和存储负担的问题.所提框架在3个引文数据集上进行节点分类实验,结果表明,其在分类准确性方面优于很多基线方法. 展开更多
关键词 自监督学习 对比学习 图神经网络 自适应增强 节点分类
下载PDF
用于半监督分类的二阶近似谱图卷积模型 被引量:1
4
作者 公沛良 艾丽华 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期1067-1076,共10页
近年来,基于局部一阶近似的谱图卷积方法在半监督节点分类任务上取得了明显优势,但是在每次更新节点特征表示时,只利用了一阶邻居节点信息而忽视了非直接邻居节点信息.为此,本文结合切比雪夫截断展开式及标准化的拉普拉斯矩阵,通过推导... 近年来,基于局部一阶近似的谱图卷积方法在半监督节点分类任务上取得了明显优势,但是在每次更新节点特征表示时,只利用了一阶邻居节点信息而忽视了非直接邻居节点信息.为此,本文结合切比雪夫截断展开式及标准化的拉普拉斯矩阵,通过推导及简化二阶近似谱图卷积模块,提出了一种融合丰富局部结构信息的改进图卷积模型,进一步提高了节点分类性能.大量的实验结果表明,本文提出的方法在不同数据集上的表现均优于现有的流行方法,验证了模型的有效性. 展开更多
关键词 图理论 谱图卷积 半监督学习 节点分类 关系数据
下载PDF
基于自监督学习的不平衡节点分类算法
5
作者 崔彩霞 王杰 +1 位作者 庞天杰 梁吉业 《模式识别与人工智能》 EI CSCD 北大核心 2022年第11期955-964,共10页
在现实世界的节点分类场景中,只有少部分节点带标签且类标签是不平衡的.然而,大部分已有的方法未同时考虑监督信息缺乏与节点类不平衡这两个问题,不能保证节点分类性能的提升.为此,文中提出基于自监督学习的不平衡节点分类算法.首先,通... 在现实世界的节点分类场景中,只有少部分节点带标签且类标签是不平衡的.然而,大部分已有的方法未同时考虑监督信息缺乏与节点类不平衡这两个问题,不能保证节点分类性能的提升.为此,文中提出基于自监督学习的不平衡节点分类算法.首先,通过图数据增强生成原图的不同视图.然后,利用自监督学习最大化不同视图间节点表示的一致性以学习节点表示.该算法通过自监督学习扩充监督信息,增强节点的表达能力.此外,在交叉熵损失和自监督对比损失的基础上,设计语义约束损失,保持图数据增强中语义的一致性.在三个真实图数据集上的实验表明,文中算法在解决不平衡节点分类问题上具有较优的性能. 展开更多
关键词 自监督学习 不平衡节点分类 图神经网络 数据增强 语义约束损失
下载PDF
NGAT:attention in breadth and depth exploration for semi-supervised graph representation learning
6
作者 Jianke HU Yin ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第3期409-421,共13页
Recently,graph neural networks(GNNs)have achieved remarkable performance in representation learning on graph-structured data.However,as the number of network layers increases,GNNs based on the neighborhood aggregation... Recently,graph neural networks(GNNs)have achieved remarkable performance in representation learning on graph-structured data.However,as the number of network layers increases,GNNs based on the neighborhood aggregation strategy deteriorate due to the problem of oversmoothing,which is the major bottleneck for applying GNNs to real-world graphs.Many efforts have been made to improve the process of feature information aggregation from directly connected nodes,i.e.,breadth exploration.However,these models perform the best only in the case of three or fewer layers,and the performance drops rapidly for deep layers.To alleviate oversmoothing,we propose a nested graph attention network(NGAT),which can work in a semi-supervised manner.In addition to breadth exploration,a k-layer NGAT uses a layer-wise aggregation strategy guided by the attention mechanism to selectively leverage feature information from the k;-order neighborhood,i.e.,depth exploration.Even with a 10-layer or deeper architecture,NGAT can balance the need for preserving the locality(including root node features and the local structure)and aggregating the information from a large neighborhood.In a number of experiments on standard node classification tasks,NGAT outperforms other novel models and achieves state-of-the-art performance. 展开更多
关键词 Graph learning Semi-supervised learning node classification ATTENTION
原文传递
基于层次对比学习的半监督节点分类算法 被引量:2
7
作者 李雅琪 王杰 +1 位作者 王锋 梁吉业 《模式识别与人工智能》 EI CSCD 北大核心 2023年第8期712-720,共9页
大多数用于半监督节点分类的图对比学习方法需要通过繁琐的图数据增强方式得到两个视图,而且这些数据增强方式会不可避免地改变图语义信息,限制现有图对比学习方法的效率和适用性.为此,文中提出基于层次对比学习的半监督节点分类算法.... 大多数用于半监督节点分类的图对比学习方法需要通过繁琐的图数据增强方式得到两个视图,而且这些数据增强方式会不可避免地改变图语义信息,限制现有图对比学习方法的效率和适用性.为此,文中提出基于层次对比学习的半监督节点分类算法.算法无需进行图数据增强,而是将图神经网络不同层次的表示作为对比的视图进行学习,从而缓解繁琐的搜索以及语义的破坏.此外,设计一种半监督对比损失,有效利用少量的标记信息和大量的无标记信息以提供丰富的监督信号和改进节点的表示.最后,在四个基准数据集上对节点分类任务的实验验证文中算法的有效性. 展开更多
关键词 半监督节点分类 图对比学习 图数据增强 半监督对比损失 图神经网络
下载PDF
半监督图节点分类任务的清洁标签后门植入
8
作者 杨潇 李高磊 《电子科技》 2024年第9期57-63,共7页
半监督图学习旨在使用给定图中的各种先验知识推断未标记节点或图的类别,通过提升数据标注的自动化,使其具有较高的节点分类效率。作为一种深度学习架构,半监督图学习也面临后门攻击威胁,但目前尚未出现对半监督图节点分类任务有效的后... 半监督图学习旨在使用给定图中的各种先验知识推断未标记节点或图的类别,通过提升数据标注的自动化,使其具有较高的节点分类效率。作为一种深度学习架构,半监督图学习也面临后门攻击威胁,但目前尚未出现对半监督图节点分类任务有效的后门攻击方法。文中提出了一种针对半监督图节点分类模型的持久性清洁标签后门攻击方法,通过在未标记的训练数据上自适应地添加触发器和对抗扰动生成中毒样本,并在不修改标签的情况下训练得到中毒的半监督图节点分类模型。而攻击者可以较为隐蔽地对模型进行投毒,且投毒率不高于4%。同时为了保证后门在模型中的持久性,设计了一种超参数调节策略以选择最佳的对抗扰动尺寸。在多个半监督图节点分类模型与开源数据集上进行的大量实验,结果表明所提方法的攻击成功率最高可达96.25%,而模型在正常样本上的分类精度几乎没有损失。 展开更多
关键词 半监督图学习 图神经网络 节点分类 对抗样本 数据投毒 后门攻击 持久性攻击 清洁标签后门
下载PDF
从拓扑的角度缓解图卷积网络的过平滑问题
9
作者 柏玉 宋敏 +2 位作者 刘士虎 唐轶 杨昔阳 《云南民族大学学报(自然科学版)》 CAS 2022年第3期280-287,共8页
运用平滑度度量指标,定量分析了深层GCNs存在的过平滑问题,验证表明:过平滑是造成深层GCNs在半监督节点分类任务上的性能下降的主要原因.从拓扑学的角度,提出了一种DropEdge技术和混合阶传播相结合的方法,DropEdge技术使节点连接更加稀... 运用平滑度度量指标,定量分析了深层GCNs存在的过平滑问题,验证表明:过平滑是造成深层GCNs在半监督节点分类任务上的性能下降的主要原因.从拓扑学的角度,提出了一种DropEdge技术和混合阶传播相结合的方法,DropEdge技术使节点连接更加稀疏,而混合阶传播使模型包含更多的局部信息,从而一定程度上可避免GCNs加深时存在的过平滑问题.实验表明,方法可缓解深层GCNs存在的过平滑问题,使得半监督节点分类的精度更高. 展开更多
关键词 图卷积网络 过平滑 半监督节点分类 DropEdge 混合阶传播
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部