期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于监督对比学习和混合注意力残差网络的隔膜泵单向阀故障诊断
1
作者
任洪兵
彭宇明
黄海波
《机电工程》
CAS
北大核心
2024年第4期594-603,共10页
由于工业生产环境中的强噪声和其他环境激励,隔膜泵单向阀不同故障的特征呈现一定的相似性,导致传统深度学习方法对单向阀的故障状态难以准确识别。为解决这一问题,提出了一种结合监督对比学习和混合注意力残差神经网络(HA-ResNet)的隔...
由于工业生产环境中的强噪声和其他环境激励,隔膜泵单向阀不同故障的特征呈现一定的相似性,导致传统深度学习方法对单向阀的故障状态难以准确识别。为解决这一问题,提出了一种结合监督对比学习和混合注意力残差神经网络(HA-ResNet)的隔膜泵单向阀故障诊断方法。首先,将注意力机制引入了残差神经网络以提升网络的学习能力,自适应调节了重要但微弱特征权重,并以恒等变换减少了有效信息被抑制现象;其次,提出了加权“监督对比损失(SCL)+交叉熵(CE)损失”,调节单向阀不同故障状态数据之间的距离,明确了单向阀不同故障状态的分类边界与降低噪声或环境激励的干扰;最后,通过工程实测数据,对监督对比学习和HA-ResNet融合方法的有效性和稳定性进行了验证。研究结果表明:监督对比学习和HA-ResNet融合方法在隔膜泵单向阀验证集上的平均准确率达到了99.3%;与其他故障诊断方法相比,其在诊断精度和稳定性上都具有一定的优势,验证了该方法在噪声干扰条件下故障诊断的可靠性。
展开更多
关键词
隔膜泵
单向阀
故障诊断
监督对比损失
混合注意力残差神经网络
特征相似性
深度学习方法
下载PDF
职称材料
题名
基于监督对比学习和混合注意力残差网络的隔膜泵单向阀故障诊断
1
作者
任洪兵
彭宇明
黄海波
机构
西南交通大学汽车与能源动力研究所
西南交通大学先进驱动节能技术教育部工程研究中心
出处
《机电工程》
CAS
北大核心
2024年第4期594-603,共10页
基金
四川省自然科学基金资助项目(2023NSFSC0395)
四川省科技成果转移转化示范项目(2022ZHCG0061)。
文摘
由于工业生产环境中的强噪声和其他环境激励,隔膜泵单向阀不同故障的特征呈现一定的相似性,导致传统深度学习方法对单向阀的故障状态难以准确识别。为解决这一问题,提出了一种结合监督对比学习和混合注意力残差神经网络(HA-ResNet)的隔膜泵单向阀故障诊断方法。首先,将注意力机制引入了残差神经网络以提升网络的学习能力,自适应调节了重要但微弱特征权重,并以恒等变换减少了有效信息被抑制现象;其次,提出了加权“监督对比损失(SCL)+交叉熵(CE)损失”,调节单向阀不同故障状态数据之间的距离,明确了单向阀不同故障状态的分类边界与降低噪声或环境激励的干扰;最后,通过工程实测数据,对监督对比学习和HA-ResNet融合方法的有效性和稳定性进行了验证。研究结果表明:监督对比学习和HA-ResNet融合方法在隔膜泵单向阀验证集上的平均准确率达到了99.3%;与其他故障诊断方法相比,其在诊断精度和稳定性上都具有一定的优势,验证了该方法在噪声干扰条件下故障诊断的可靠性。
关键词
隔膜泵
单向阀
故障诊断
监督对比损失
混合注意力残差神经网络
特征相似性
深度学习方法
Keywords
diaphragm
pump
check
valve
fault
diagnosis
supervised
contrastive
loss
(
scl
)
hybrid
attention
residual
neural
networks(HA-ResNet)
feature
similarity
deep
learning
method
分类号
TH323 [机械工程—机械制造及自动化]
TD50 [矿业工程—矿山机电]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于监督对比学习和混合注意力残差网络的隔膜泵单向阀故障诊断
任洪兵
彭宇明
黄海波
《机电工程》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部