By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history...By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history and structural deformation of the marine stratigraphic system. The burial history of marine source rocks can be divided into three types, i.e., type I, type II and type III, which are obviously different from the case with present hydrocarbon phases in terms of hydrocarbon generation and petroleum-reservoir formation. Based on evolution history, the structural belts in the marine stratigraphic sequence can also be divided into four types, i.e. earlier normal fault-later fault-fold type, earlier uplift-later fault-fold type, earlier uplift-later flattened slope type, and earlier depression-later thrust type. In this paper, a successive gas generation model was proposed, and it was particularly pointed out that coupling of geothermal field annealing evolution and tectonic subsidence and late gas generation from dispersed liquid hydrocarbon in highly matured to over-matured source rocks are key factors for formation of marine petroleum reservoirs. The geological conditions for formation of high-grade reservoirs in deep marine system, covering early hydrocarbon injection, deep denudation and buried dolomitization, were summarized. It was finally concluded that three major structural belts, i.e. paleo-uplift belt characterized by composite hydrocarbon accumulation, paleo-fault belt and high-energy sedimentary facies belt, were involved in marine hydrocarbon accumulation.展开更多
Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when t...Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.展开更多
基金the "973" programme of China (Grant No. 2001CB209100)
文摘By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history and structural deformation of the marine stratigraphic system. The burial history of marine source rocks can be divided into three types, i.e., type I, type II and type III, which are obviously different from the case with present hydrocarbon phases in terms of hydrocarbon generation and petroleum-reservoir formation. Based on evolution history, the structural belts in the marine stratigraphic sequence can also be divided into four types, i.e. earlier normal fault-later fault-fold type, earlier uplift-later fault-fold type, earlier uplift-later flattened slope type, and earlier depression-later thrust type. In this paper, a successive gas generation model was proposed, and it was particularly pointed out that coupling of geothermal field annealing evolution and tectonic subsidence and late gas generation from dispersed liquid hydrocarbon in highly matured to over-matured source rocks are key factors for formation of marine petroleum reservoirs. The geological conditions for formation of high-grade reservoirs in deep marine system, covering early hydrocarbon injection, deep denudation and buried dolomitization, were summarized. It was finally concluded that three major structural belts, i.e. paleo-uplift belt characterized by composite hydrocarbon accumulation, paleo-fault belt and high-energy sedimentary facies belt, were involved in marine hydrocarbon accumulation.
基金supported by the National Natural Science Foundation of China (Nos. 10972072, 50679022, and 10872052)National Basic Research Program of China (No. 2007CB714104)the state Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (No. 2009585912)
文摘Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.