A PGSTAT 30 and a BOOSTER 20A were used to measure cell impedance.Electrical conductivity was gained by the Continuously Varying Cell Constant Technique.Electrical conductivity of KCl was measured for comparison.The r...A PGSTAT 30 and a BOOSTER 20A were used to measure cell impedance.Electrical conductivity was gained by the Continuously Varying Cell Constant Technique.Electrical conductivity of KCl was measured for comparison.The results prove that the method is reliable and accurate.The electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl)system was studied by this method.Activation energy of conductance was obtained based on the experiment results.The experiments show that electrical conductivity is increased greatly with NaCl and LiF added.Increasing 1%LiF(mass fraction)results in corresponding increase of 0.0276 S/cm for superheat condition of 15℃.For NaCl,it is 0.024 S/cm.Electrical conductivity is increased by 0.003 S/cm with 1℃temperature increase.The electrical conductivity is lower than that predicted by the WANG Model and higher than that predicted by the Choudhary Model.展开更多
基金Project(50334030)supported by the National Natural Science Foundation of China
文摘A PGSTAT 30 and a BOOSTER 20A were used to measure cell impedance.Electrical conductivity was gained by the Continuously Varying Cell Constant Technique.Electrical conductivity of KCl was measured for comparison.The results prove that the method is reliable and accurate.The electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl)system was studied by this method.Activation energy of conductance was obtained based on the experiment results.The experiments show that electrical conductivity is increased greatly with NaCl and LiF added.Increasing 1%LiF(mass fraction)results in corresponding increase of 0.0276 S/cm for superheat condition of 15℃.For NaCl,it is 0.024 S/cm.Electrical conductivity is increased by 0.003 S/cm with 1℃temperature increase.The electrical conductivity is lower than that predicted by the WANG Model and higher than that predicted by the Choudhary Model.