The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through t...The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups:(1) late Meso-to Neoproterozoic(1.1-0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Soya Coast areas, and(2) dominantly Neoarchean to Paleoproterozoic(2.8-2.4 Ga) zircons from the southwestern part of the LHC in southern Lutzow-Holm Bay area. The ca.1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic(1.3-1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments(e.g., Rayner Complex, Eastern Ghats Belt). Meso-to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso-to Neoproterozoic zircons. Paleo-to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ~2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic(ca. 2.5 Ga) and Neoproterozoic(ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider 展开更多
This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan ...This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin.The study involves petrology,microscale X-ray diffraction,trace element analysis,and C-O-Sr-Mg isotope experiments to provide a detailed analysis.The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement.The Dengying Formation,which developed under a sedimentary background of a restricted platform,contains special microbial and microcrystalline dolostones.The dolomite grains are small(<30μm)and have a low order degree(Min=0.55),with large unit cell parameters and an extremely high Na content(Max=788 ppm).The^(87)Sr/^(86)Sr value of the dolostone is consistent with contemporaneous seawater,while the δ^(13)C andδ^(18)O values are lower than those of the contemporaneous seawater.The δ^(26)Mg value is small(Min=-2.31‰).Powder crystal,fine-crystalline,and calcite dolostones with coarser and more ordered crystals exhibit similar δ^(13)C and^(87)Sr/^(86)Sr values to microbial and microcrystalline dolostone.During the sedimentary period of the Dengying Formation,ancient marine conditions were favorable for microbial survival.Microorganisms induced the direct precipitation of primary dolomite in seawater,forming microbial and microcrystalline dolostones during the seawater diagenesis period.During the subsequent diagenesis period,dolostones underwent the effects of dissolution-recrystallization,structures,and hydrothermal fluids.This resulted in the formation of dolostone with coarser crystals,a higher degree of order,and various types of cement.The Longwangmiao Formation was developed in an interplatform beach characterized by special particle dolostone.The particle dolostone has a large grain size(>30μm),high order degree(Min=0.7),small unit cell parameters,high Na content(Max=432 ppm),and low Fe and Mn content.展开更多
The evolution of the earth is marked by development of more than 70% of the present day continents during Archean. The Archean - Proterozoic boundary is characterized by continental amalgamation, and subsequent breaki...The evolution of the earth is marked by development of more than 70% of the present day continents during Archean. The Archean - Proterozoic boundary is characterized by continental amalgamation, and subsequent breaking and development of worldwide glaciations. The Paleoproterozoic time is characterized by change in atmospheric oxygen and intense biogenic activity during the early part, and amal- gamation of the continents to form the supercontinent "Columbia", development of sulphidic ocean chemistry and disappearance of major BIF deposit formation towards the later part.展开更多
The Earth’s lower mantle structure,as revealed by seismic tomography studies,is best characterized by two large low seismic velocity provinces(i.e.,LLSVP)beneath Africa and Pacific and their surrounding,circum-
基金partly supported by a Grant-in-Aid for Scientific Research(B)from Japan Society for the Promotion of Science(JSPS)(No.26302009)by the NIPR General Collaboration Projects(No.26-34)to Tsunogae
文摘The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups:(1) late Meso-to Neoproterozoic(1.1-0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Soya Coast areas, and(2) dominantly Neoarchean to Paleoproterozoic(2.8-2.4 Ga) zircons from the southwestern part of the LHC in southern Lutzow-Holm Bay area. The ca.1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic(1.3-1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments(e.g., Rayner Complex, Eastern Ghats Belt). Meso-to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso-to Neoproterozoic zircons. Paleo-to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ~2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic(ca. 2.5 Ga) and Neoproterozoic(ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider
基金supported by the Scientific Research and Technological Development Project of China National Petroleum Corporation(Grant No.2021DJ05)。
文摘This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin.The study involves petrology,microscale X-ray diffraction,trace element analysis,and C-O-Sr-Mg isotope experiments to provide a detailed analysis.The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement.The Dengying Formation,which developed under a sedimentary background of a restricted platform,contains special microbial and microcrystalline dolostones.The dolomite grains are small(<30μm)and have a low order degree(Min=0.55),with large unit cell parameters and an extremely high Na content(Max=788 ppm).The^(87)Sr/^(86)Sr value of the dolostone is consistent with contemporaneous seawater,while the δ^(13)C andδ^(18)O values are lower than those of the contemporaneous seawater.The δ^(26)Mg value is small(Min=-2.31‰).Powder crystal,fine-crystalline,and calcite dolostones with coarser and more ordered crystals exhibit similar δ^(13)C and^(87)Sr/^(86)Sr values to microbial and microcrystalline dolostone.During the sedimentary period of the Dengying Formation,ancient marine conditions were favorable for microbial survival.Microorganisms induced the direct precipitation of primary dolomite in seawater,forming microbial and microcrystalline dolostones during the seawater diagenesis period.During the subsequent diagenesis period,dolostones underwent the effects of dissolution-recrystallization,structures,and hydrothermal fluids.This resulted in the formation of dolostone with coarser crystals,a higher degree of order,and various types of cement.The Longwangmiao Formation was developed in an interplatform beach characterized by special particle dolostone.The particle dolostone has a large grain size(>30μm),high order degree(Min=0.7),small unit cell parameters,high Na content(Max=432 ppm),and low Fe and Mn content.
文摘The evolution of the earth is marked by development of more than 70% of the present day continents during Archean. The Archean - Proterozoic boundary is characterized by continental amalgamation, and subsequent breaking and development of worldwide glaciations. The Paleoproterozoic time is characterized by change in atmospheric oxygen and intense biogenic activity during the early part, and amal- gamation of the continents to form the supercontinent "Columbia", development of sulphidic ocean chemistry and disappearance of major BIF deposit formation towards the later part.
文摘The Earth’s lower mantle structure,as revealed by seismic tomography studies,is best characterized by two large low seismic velocity provinces(i.e.,LLSVP)beneath Africa and Pacific and their surrounding,circum-