Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),f...Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.展开更多
随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with s...随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with superconducting magnetic energy storage,LIQHYSMES)。该技术利用电力制氢并液化储存,大大提升了装置容量,同时具有SMES的响应速度快的特点。此外,由于液氢储能部分和SMES共用制冷设备和冷媒,可以大大减少制冷成本。在分析了LIQHYSMES的工作原理和主要结构的基础上,对其进行经济技术性分析,举例分析了其在智能电网和未来能源互联网中的应用前景,仿真验证了其对不同时间尺度的不平衡功率均有较好的平抑效果,最后阐述了其规模应用亟待解决的关键技术。展开更多
文摘Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.
文摘随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with superconducting magnetic energy storage,LIQHYSMES)。该技术利用电力制氢并液化储存,大大提升了装置容量,同时具有SMES的响应速度快的特点。此外,由于液氢储能部分和SMES共用制冷设备和冷媒,可以大大减少制冷成本。在分析了LIQHYSMES的工作原理和主要结构的基础上,对其进行经济技术性分析,举例分析了其在智能电网和未来能源互联网中的应用前景,仿真验证了其对不同时间尺度的不平衡功率均有较好的平抑效果,最后阐述了其规模应用亟待解决的关键技术。