The technology of superabrasive grinding has been developed in order to achieve high-quality finish in extremely hard and brittle materials.Thereafter, truing and dressing technology on super abrasive grinding wheel i...The technology of superabrasive grinding has been developed in order to achieve high-quality finish in extremely hard and brittle materials.Thereafter, truing and dressing technology on super abrasive grinding wheel is one of the most important subjects on precise machining field at present.In this paper, mist-jetting electrical discharge technology was applied to dressing metal-bonded superabrasive wheels.And a systematical study on the mechanism of selective removal of the bond was proposed.Experiments on dressing bronze bonded diamond grind wheels were carried out on a die-sinking electrical discharge machine.The diamond wheel topographies before and after electrical discharge dressing were observed by VH-800 3D digital microscope.The wheel profiles before and after dressing were observed.The results of electrical discharge dressing under different electrical parameters were compared.Experimental results indicate that the favorable surface topography can be obtained under suitable processing parameters and mist-jetting electrical discharge dressing(MEDD) is feasible for metal-bonded diamond grinding wheel.展开更多
基金the National Natural Science Foundation of China (No. 50775143)the Research Fundfor the Doctoral Program of Higher Education(No. 20060248031)the User program of Research Developing Center of Manufacturing Technology and Automatic Equipment
文摘The technology of superabrasive grinding has been developed in order to achieve high-quality finish in extremely hard and brittle materials.Thereafter, truing and dressing technology on super abrasive grinding wheel is one of the most important subjects on precise machining field at present.In this paper, mist-jetting electrical discharge technology was applied to dressing metal-bonded superabrasive wheels.And a systematical study on the mechanism of selective removal of the bond was proposed.Experiments on dressing bronze bonded diamond grind wheels were carried out on a die-sinking electrical discharge machine.The diamond wheel topographies before and after electrical discharge dressing were observed by VH-800 3D digital microscope.The wheel profiles before and after dressing were observed.The results of electrical discharge dressing under different electrical parameters were compared.Experimental results indicate that the favorable surface topography can be obtained under suitable processing parameters and mist-jetting electrical discharge dressing(MEDD) is feasible for metal-bonded diamond grinding wheel.