期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于CNN与GAN深度学习模型近壁面湍流场超分辨率重构的精细化研究
1
作者 吴昊恺 陈耀然 +2 位作者 周岱 陈文礼 曹勇 《力学学报》 EI CAS CSCD 北大核心 2024年第8期2231-2242,共12页
由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等... 由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等缺陷.为更准确、高效地预测边界层的空间变化,研究利用超精度卷积神经网络(SRCNN)与生成对抗神经网络(SRGAN),在空间上将低精度的近壁面湍流场超精度重构成高精度的风场.利用近壁面湍流直接数值模拟的公共数据库训练模型并评价模型的重构性能.为寻求合适的超精度模型生成方式,研究围绕训练样本量及网络深度,开展详细的敏感性分析,确定合适的训练网络及其较优的训练参数设置.同时,基于经不同下采样因子处理的低精度流场输入,分析模型在近壁面湍流重构中的适用范围.研究发现,对比于SRCNN模型,SRGAN模型对近壁面湍流内小尺度结构的重现效果更佳.当基于4层卷积残差块、300样本量开展训练时,所生成的SRGAN模型可在较低的训练代价下实现较优的重构效果.当进行10倍超精度重构时,SRGAN模型可保证较理想的预测精度.研究成果为边界层风场的准确重构提供技术支撑,为城区建筑物风致效应的高效预测提供精确的入流条件. 展开更多
关键词 深度学习 超精度生成对抗神经网络 超精度卷积神经网络 超精度重构 城市边界层风场
下载PDF
基于多特征融合与XGBoost的肺结节检测 被引量:3
2
作者 潘子妍 邢素霞 +4 位作者 逄键梁 申楠 王瑜 刘子骄 鞠子涵 《中国医学物理学杂志》 CSCD 2021年第11期1371-1376,共6页
为了提高肺结节检测的精确度和效率,提出一种基于多特征融合和XGBoost的肺结节检测模型。首先采用阈值分割与形态学运算,获得候选结节区域;然后通过基于超分辨率重建的卷积神经网络进行候选结节的特征增强;其次采用快速鲁棒特征、灰度... 为了提高肺结节检测的精确度和效率,提出一种基于多特征融合和XGBoost的肺结节检测模型。首先采用阈值分割与形态学运算,获得候选结节区域;然后通过基于超分辨率重建的卷积神经网络进行候选结节的特征增强;其次采用快速鲁棒特征、灰度共生矩阵、灰度不变矩的提取方法获得候选结节的局部与全局的多种特征,采用词袋模型进行降维并融合;最后利用XGBoost-决策树分类模型去除假阳性结节,完成肺结节的检测。在LIDC-IDRI数据上进行的实验表明该模型能达到97.87%的准确率和97.92%的召回率。该模型可用于辅助医生进行肺结节诊断,具有一定的临床应用价值。 展开更多
关键词 肺结节检测 基于超分辨率重建的卷积神经网络 特征融合 词袋模型 XGBoost
下载PDF
Super-Resolution Stress Imaging for Terahertz-Elastic Based on SRCNN
3
作者 Delin Liu Zhen Zhen +4 位作者 Yufen Du Ka Kang Haonan Zhao Chuanwei Li Zhiyong Wang 《Optics and Photonics Journal》 CAS 2022年第11期253-268,共16页
Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz im... Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained. 展开更多
关键词 THZ-TDS Stress Measurement super-resolution convolutional neural network
下载PDF
基于宽深超分辨率网络的信道估计方法
4
作者 谢朋 钱蓉蓉 任文平 《电讯技术》 北大核心 2024年第1期132-138,共7页
在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resol... 在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中由于快衰落导致信道特征不连续,常规的信道插值方法无法准确反应导频与整个信道之间的关联性。针对这一问题,提出了一种基于宽深超分辨率(Wide Deep Super-resolution,WDSR)网络的信道估计方法,把导频值通过最小二乘估计(Least Squares,LS)初步插值,再通过WDSR网络再次放大重构整个信道的响应。将信道估计插值上采样替换成初步插值和图像超分辨率上采样两步。仿真结果表明,与超分辨率卷积神经网络(Super-resolution Convolutional Neural Network,SRCNN)信道估计算法相比,在不同种类的信道以及导频数下WDSR信道估计方法均方误差性能提升约4.6 dB。 展开更多
关键词 OFDM系统 信道估计 宽深超分辨率(WDSR)网络 超分辨率卷积神经网络(SRCNN)
下载PDF
Performance Evaluation of Super-Resolution Methods Using Deep-Learning and Sparse-Coding for Improving the Image Quality of Magnified Images in Chest Radiographs
5
作者 Kensuke Umehara Junko Ota +4 位作者 Naoki Ishimaru Shunsuke Ohno Kentaro Okamoto Takanori Suzuki Takayuki Ishida 《Open Journal of Medical Imaging》 2017年第3期100-111,共12页
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed... Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed. 展开更多
关键词 Deep LEARNING super-resolution super-resolution convolutional neural network (SRCNN) Sparse-Coding super-resolution (ScSR) CHEST X-Ray
下载PDF
基于SRCNN的QR二维码-人脸重构算法 被引量:1
6
作者 霍婷婷 金星 +2 位作者 赵欣怡 王令旗 张程悦 《电视技术》 2022年第1期55-59,共5页
针对人脸识别技术存在的缺少生物信息的隐私保护、有很大的信息泄露风险问题,提出基于超分辨率卷积神经网络的QR二维码-人脸重构算法。该算法将获取到的人脸特征信息转化为QR二维码,并生成QR二维码图片,然后将存储的QR二维码图片与人脸... 针对人脸识别技术存在的缺少生物信息的隐私保护、有很大的信息泄露风险问题,提出基于超分辨率卷积神经网络的QR二维码-人脸重构算法。该算法将获取到的人脸特征信息转化为QR二维码,并生成QR二维码图片,然后将存储的QR二维码图片与人脸特征信息对比,当比对结果达到一定阈值,实现人脸识别。该算法实现了QR二维码与人脸信息的重构,保证了人脸生物信息的准确、快速传递,也提高了人脸识别率,为生物信息的安全性和隐私保护提供了一种有效途径。 展开更多
关键词 超分辨率卷积神经网络(SRCNN) 人脸识别 QR二维码 人脸特征信息 重构算法 识别率
下载PDF
深度学习方法在海浪有效波高数据高分辨率处理中的应用 被引量:2
7
作者 朱晓雯 侯宇 +1 位作者 刘玉海 吴克俭 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第11期22-29,共8页
本文基于欧洲中期天气预报中心的有效波高数据,运用传统的双三次插值(Bicubic interpolation)、克里金插值(Kriging interpolation)以及两种改进的超分辨率卷积神经网络(Super-Resolution CNN,简称SRCNN)进行高分辨率处理,使用峰值信噪... 本文基于欧洲中期天气预报中心的有效波高数据,运用传统的双三次插值(Bicubic interpolation)、克里金插值(Kriging interpolation)以及两种改进的超分辨率卷积神经网络(Super-Resolution CNN,简称SRCNN)进行高分辨率处理,使用峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、均方根误差(Root-Mean-Square Error,RMSE)、结构相似度(Structural Similarity,SSIM)、余弦相似性(Cosine Similarity)等评价指标比较了各种方法的高分辨率处理效果,并分析了每种方法的误差分布特点。结果表明,改进的SRCNN方法(SRCNN_2)是一种在整体效果、局部细节和计算效率方面均比较优秀的高分辨率处理方法,是深度学习方法在海洋数据高分辨率处理问题上一次成功的应用,但改进的SRCNN方法在近岸有效波高数据的处理效果方面还有待提高。 展开更多
关键词 海浪有效波高 双三次插值 克里金插值 超分辨率卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部