Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chlorometh...Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.展开更多
Polysulfone (PSF) membranes have gained great attention in the fields of ultrafiltration, microfiltration, and thin film composite membranes for nanofiltration or reverse osmosis. For the first time, it is proposed ...Polysulfone (PSF) membranes have gained great attention in the fields of ultrafiltration, microfiltration, and thin film composite membranes for nanofiltration or reverse osmosis. For the first time, it is proposed to fabricate PSF membranes via thermally induced phase separation (TIPS) process using diphenyl sulfone (DPSO2) and polyethylene glycol (PEG) as mixed diluent. DPSO2 is chosen as a crystallizable diluent, while PEG is considered in terms of molecular weight (Mw) and dosage. We systematically investigate the interactions between PSF, DPSO2 and PEG based on the simulation calculations and solubility parameter theory. It is inferred that DPSO2 has an excellent compatibility with PSF, and the addition of PEG results in the ternary system thermodynamically less stable and then facilitates its liquid-liquid (L-L) phase separation. SEM images indicate that cellular-like pores are obvious throughout the membrane when the PEG content in the mixed diluent is 25 wt%-35 wt%. We can facilely manipulate the pore size, water flux and mechanical properties of PSF membranes with the dosage of PEG-200, the Mw of PEG or the cooling rate. The successful application of TIPS can provide a new approach for structure manipulation and performance enhancement of PSF membranes.展开更多
A novel poly (ether sulfone ketone) containing the phthalazinone moiety was prepared by the reaction of 4-)4-hydroxyphenyl) (2H) phthalazin-1-one with activated dichloro-monomers. The polymer was characterized by FT-I...A novel poly (ether sulfone ketone) containing the phthalazinone moiety was prepared by the reaction of 4-)4-hydroxyphenyl) (2H) phthalazin-1-one with activated dichloro-monomers. The polymer was characterized by FT-IR, H-1-NMR, DSC, TGA and X-ray diffraction.展开更多
Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membr...Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.展开更多
Photothermal therapy(PTT)is a cutting-edge cancer treatment that can kill cancer cells in hypoxic environments without relying on oxygen.Seeking of the ideal photothermal agents with a high absorption coefficient in t...Photothermal therapy(PTT)is a cutting-edge cancer treatment that can kill cancer cells in hypoxic environments without relying on oxygen.Seeking of the ideal photothermal agents with a high absorption coefficient in the near-infrared region,and a high excellent photothermal conversion efficiency is of great significance.Sulfone-Rhodanmine dye has showed an impressive absorption wavelength over 700 nm,but suffered from a stability issue.In this study,we synthesized five sulfone rhodamines and investigated the substitution effects on stability.SO_(2)R2 showed high stability and strong absorbance at 714 nm with an excellent photothermal conversion efficiency of 53.06%,making it suitable for accurate photoacoustic imaging-guided photothermal therapy in vivo.展开更多
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never...The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.展开更多
A new,four component copper(Ⅰ)-catalyzed interrupted click/radical relay cascade has been developed.This unprecedented interrupted click reaction provides a rapid modular synthesis of triazole sulfones,important priv...A new,four component copper(Ⅰ)-catalyzed interrupted click/radical relay cascade has been developed.This unprecedented interrupted click reaction provides a rapid modular synthesis of triazole sulfones,important privileged heterocyclic pharmacophores which cannot be accessed by a traditional click reaction.Radical interception of cuprate-triazole,the key reaction intermediate formed in situ,is an important feature of this process.展开更多
Novel poly(aryl ether sulfone ketone)s (PAESK) were synthesized from bisphenol A (BPA), 9,9'-bis(4-hydroxyphenyl) fluorene (BHPF), 4,4'-dichlorodiphenylsulfone (DCS) and 4,4'-difluorobenzophenone (DFB...Novel poly(aryl ether sulfone ketone)s (PAESK) were synthesized from bisphenol A (BPA), 9,9'-bis(4-hydroxyphenyl) fluorene (BHPF), 4,4'-dichlorodiphenylsulfone (DCS) and 4,4'-difluorobenzophenone (DFB) via nucleophilic substitution polymerization, which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment. The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability, can be easily cast into flexible, white and non-transparent fiat films. The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail. SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section. Pure water flux of the membranes increased from 71.87 L·m-2.h-1 to 247.65 L·m-2.h-1, while the retention of BSA decreased slightly, and the water contact angle decreased from 82.1 ° to 55.6° with the PVP concentration from 0 wt% to 10 wt%. With increasing concentration of PVP, the mechanical properties of membranes decreased, while the thermal stability increased. The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.展开更多
The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the w...The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.展开更多
A novel series of poly(aryl ether sulfone ketone)s (PPESKs) containing phthalazinone and biphenyl moieties were prepared by two-step nucleophilic polycondensation reaction. The ^-Mw values of these copolymers were...A novel series of poly(aryl ether sulfone ketone)s (PPESKs) containing phthalazinone and biphenyl moieties were prepared by two-step nucleophilic polycondensation reaction. The ^-Mw values of these copolymers were between 38,330 and 67,900. The glass transition temperatures (Tg) and 5% decomposition temperatures were ranged in 253-269 ℃ and 488-500 ℃, respectively, The structures of these copolymers were confirmed by FT-IR and ^1H NMR. Moreover, all the resultant copolymers were amorphous determined by wide angle X-ray diffraction (WAXD).展开更多
A group of poly (phthalazinone ether sulfone ketone)/potassium-titanate-whisker (PPSEK/whisker) composites was prepared by coprecipitation from solution. The whisker surface was modified using titanate coupling agent ...A group of poly (phthalazinone ether sulfone ketone)/potassium-titanate-whisker (PPSEK/whisker) composites was prepared by coprecipitation from solution. The whisker surface was modified using titanate coupling agent prior to blending. The tensile, impact, morphology and thermal properties of the moulded composites were investigated. The measurements showed that the tensile strength and impact strength of the composites increased with increasing whiskers content up to 10 to 20 phr, thereafter they showed a decrease in the whiskers content reached 40 phr. At the same time, the modulus of the composites increased with increasing whiskers content. Scanning electron microscopy studies revealed that the whiskers within the composites were dispersed uniformly by treated with coupling agent. Finally, thermogravimetric analysis showed that the heat resistance of the composites tended to increase with increasing whisker content. The results were analysed and discussed in terms of established models of the behaviour of short-fiber reinforced composites.展开更多
A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was pre...A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was prepared by a demethylation reaction of a methoxyphenylated PAES(PES-OCH3) in the presence of pyridine/hydrochlo- ride. The PES-OCH3 was synthesized by an aromatic nucleophilic substitution of bis(4-chlorophenyl)sulfone and (p-methoxy)phenylhydroquinone. Both DSC and solubility investigation were used to study the crosslinking behavior of PES-OAllyl. After heat treatment, the glass transition temperature(Tg) value of PES-OAllyl sharply increased from 165 ℃ to 227 ℃. Meanwhile, PES-OAllyl changed from a soluble polymer to an insoluble thermoset. In addition, TGA(thermogravimetric analysis) result suggests that the thermal stability of the crosslinked product was improved. All the data prove that the crosslinked PES-OAllyl could be a potential solvent-resistance high-performance material.展开更多
This review provides a comprehensive summary of progress to date in the utilization of rongalite as a versatile reagent in organic synthesis,with a focus on recent researches.The contents have been organized according...This review provides a comprehensive summary of progress to date in the utilization of rongalite as a versatile reagent in organic synthesis,with a focus on recent researches.The contents have been organized according to the functions exhibited by rongalite.Reaction mechanisms are provided,demonstrating the multifaceted roles of this compound in various transformations,including as a sulfone,C1 or masked proton source and as a single electron donor or reducing agent.展开更多
基金partly financed by the Major State Basic Research Development Program of China(No.2003 CB615700)the National Natural Science Foundation of China(No.20604005).
文摘Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.
基金supported by the National Natural Science Foundation of China(Nos.21174124 and 21534009)
文摘Polysulfone (PSF) membranes have gained great attention in the fields of ultrafiltration, microfiltration, and thin film composite membranes for nanofiltration or reverse osmosis. For the first time, it is proposed to fabricate PSF membranes via thermally induced phase separation (TIPS) process using diphenyl sulfone (DPSO2) and polyethylene glycol (PEG) as mixed diluent. DPSO2 is chosen as a crystallizable diluent, while PEG is considered in terms of molecular weight (Mw) and dosage. We systematically investigate the interactions between PSF, DPSO2 and PEG based on the simulation calculations and solubility parameter theory. It is inferred that DPSO2 has an excellent compatibility with PSF, and the addition of PEG results in the ternary system thermodynamically less stable and then facilitates its liquid-liquid (L-L) phase separation. SEM images indicate that cellular-like pores are obvious throughout the membrane when the PEG content in the mixed diluent is 25 wt%-35 wt%. We can facilely manipulate the pore size, water flux and mechanical properties of PSF membranes with the dosage of PEG-200, the Mw of PEG or the cooling rate. The successful application of TIPS can provide a new approach for structure manipulation and performance enhancement of PSF membranes.
文摘A novel poly (ether sulfone ketone) containing the phthalazinone moiety was prepared by the reaction of 4-)4-hydroxyphenyl) (2H) phthalazin-1-one with activated dichloro-monomers. The polymer was characterized by FT-IR, H-1-NMR, DSC, TGA and X-ray diffraction.
基金financially supported by the National Natural Science Foundation of China(No.22271022)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS342)supported by the China Scholarship Council(CSC No.201802335014).
文摘Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.
基金the National Natural Science Foundation of China(Nos.21762045,21911540466)Shandong Provincial Natural Science Foundation(No.ZR2019YQ12)+1 种基金China Postdoctoral Science Foundation(No.219M652306)Taishan Scholar Project(No.tsqn201812049)for supporting this work。
文摘Photothermal therapy(PTT)is a cutting-edge cancer treatment that can kill cancer cells in hypoxic environments without relying on oxygen.Seeking of the ideal photothermal agents with a high absorption coefficient in the near-infrared region,and a high excellent photothermal conversion efficiency is of great significance.Sulfone-Rhodanmine dye has showed an impressive absorption wavelength over 700 nm,but suffered from a stability issue.In this study,we synthesized five sulfone rhodamines and investigated the substitution effects on stability.SO_(2)R2 showed high stability and strong absorbance at 714 nm with an excellent photothermal conversion efficiency of 53.06%,making it suitable for accurate photoacoustic imaging-guided photothermal therapy in vivo.
基金supported by the National Natural Science Foundation of China(51978133,52100026,U20A20322,52170151,51978132)the Fundamental Research Funds for the Central Universities of China(2412021QD022)+1 种基金the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ298)the Industrialization Cultivation Project of Jilin Provincial Department of Education(JJKH20221174CY)。
文摘The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.
基金financial support from the Natural Science Foundation of China and Shandong Province(Nos.21971149,92156007,ZR2019ZD45,ZR2020KB005)the Fundamental Research Funds of Shandong University。
文摘A new,four component copper(Ⅰ)-catalyzed interrupted click/radical relay cascade has been developed.This unprecedented interrupted click reaction provides a rapid modular synthesis of triazole sulfones,important privileged heterocyclic pharmacophores which cannot be accessed by a traditional click reaction.Radical interception of cuprate-triazole,the key reaction intermediate formed in situ,is an important feature of this process.
基金financial support under Heilongjiang Postdoctoral Fund (No.LBH-Z09175)
文摘Novel poly(aryl ether sulfone ketone)s (PAESK) were synthesized from bisphenol A (BPA), 9,9'-bis(4-hydroxyphenyl) fluorene (BHPF), 4,4'-dichlorodiphenylsulfone (DCS) and 4,4'-difluorobenzophenone (DFB) via nucleophilic substitution polymerization, which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment. The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability, can be easily cast into flexible, white and non-transparent fiat films. The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail. SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section. Pure water flux of the membranes increased from 71.87 L·m-2.h-1 to 247.65 L·m-2.h-1, while the retention of BSA decreased slightly, and the water contact angle decreased from 82.1 ° to 55.6° with the PVP concentration from 0 wt% to 10 wt%. With increasing concentration of PVP, the mechanical properties of membranes decreased, while the thermal stability increased. The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.
基金supported by the 863 program of China(No.2007AA 03Z561)
文摘The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.
文摘A novel series of poly(aryl ether sulfone ketone)s (PPESKs) containing phthalazinone and biphenyl moieties were prepared by two-step nucleophilic polycondensation reaction. The ^-Mw values of these copolymers were between 38,330 and 67,900. The glass transition temperatures (Tg) and 5% decomposition temperatures were ranged in 253-269 ℃ and 488-500 ℃, respectively, The structures of these copolymers were confirmed by FT-IR and ^1H NMR. Moreover, all the resultant copolymers were amorphous determined by wide angle X-ray diffraction (WAXD).
基金the National Natural Science Foundation of China under grant No.59473901 Educational Office Fesearch Project of Liaoning Provice under grant No.2020701095.
文摘A group of poly (phthalazinone ether sulfone ketone)/potassium-titanate-whisker (PPSEK/whisker) composites was prepared by coprecipitation from solution. The whisker surface was modified using titanate coupling agent prior to blending. The tensile, impact, morphology and thermal properties of the moulded composites were investigated. The measurements showed that the tensile strength and impact strength of the composites increased with increasing whiskers content up to 10 to 20 phr, thereafter they showed a decrease in the whiskers content reached 40 phr. At the same time, the modulus of the composites increased with increasing whiskers content. Scanning electron microscopy studies revealed that the whiskers within the composites were dispersed uniformly by treated with coupling agent. Finally, thermogravimetric analysis showed that the heat resistance of the composites tended to increase with increasing whisker content. The results were analysed and discussed in terms of established models of the behaviour of short-fiber reinforced composites.
基金Supported by the National Natural Science Foundation of China(No.50973040)the Science and Technology Development Plan of Jilin Province, China(No.20090322)
文摘A novel type of crosslinkable poly(aryl ether sulfone)(PAES) bearing an allyl pendant(PES-OAllyl) was synthesized by a grafting reaction of hydrophenyl-containing PAES(PES-OH) and allyl bromide. PES-OH was prepared by a demethylation reaction of a methoxyphenylated PAES(PES-OCH3) in the presence of pyridine/hydrochlo- ride. The PES-OCH3 was synthesized by an aromatic nucleophilic substitution of bis(4-chlorophenyl)sulfone and (p-methoxy)phenylhydroquinone. Both DSC and solubility investigation were used to study the crosslinking behavior of PES-OAllyl. After heat treatment, the glass transition temperature(Tg) value of PES-OAllyl sharply increased from 165 ℃ to 227 ℃. Meanwhile, PES-OAllyl changed from a soluble polymer to an insoluble thermoset. In addition, TGA(thermogravimetric analysis) result suggests that the thermal stability of the crosslinked product was improved. All the data prove that the crosslinked PES-OAllyl could be a potential solvent-resistance high-performance material.
基金financial support from the the National Natural Science Foundation of China(Grants 21971080,21971079,21772051)supported by 111 Project B17019.
文摘This review provides a comprehensive summary of progress to date in the utilization of rongalite as a versatile reagent in organic synthesis,with a focus on recent researches.The contents have been organized according to the functions exhibited by rongalite.Reaction mechanisms are provided,demonstrating the multifaceted roles of this compound in various transformations,including as a sulfone,C1 or masked proton source and as a single electron donor or reducing agent.