-
题名基于近红外光谱的冻融猪肉糜鉴别模型研究
被引量:3
- 1
-
-
作者
白天
张丽华
李顺峰
黄姗
纵伟
-
机构
河南省食品和盐业检验技术研究院
郑州轻工业大学食品与生物工程学院
河南省冷链食品质量安全控制重点实验室
河南省农业科学院农副产品加工研究中心
-
出处
《食品安全质量检测学报》
CAS
北大核心
2023年第20期56-63,共8页
-
基金
河南省市场监督管理局科技计划项目(2022SJ18)。
-
文摘
目的建立基于近红外光谱的定性分析模型,实现对冻融猪肉糜的判别。方法采用近红外光谱分析技术对新鲜猪肉糜和不同冻融次数猪肉糜分别进行无损鉴别,建立了窄神经网络(narrow neural network,NNN)、线性判别(linear discriminant,LD)、支持向量机(support vector machine,SVM)和子空间判别(subspace discriminant,SD)4种不同的判别模型,并对所建立的模型性能采用正确判别率、混淆矩阵(confusion matrix,CM)、受试者工作特征曲线(receiver operating characteristic curve,ROC)和曲线下面积(area under the curve,AUC)4个指标进行评价。结果基于SD建立的判别模型较优,其预测集正确判别率为96.2%,高于基于LD(94.3%)、NNN(79.0%)和SVM(54.8%)所建的判别模型正确判别率,并且其CM、ROC和AUC均显示基于SD所建判别模型对于冻融猪肉糜分类的优越性。结论本研究建立的近红外光谱技术结合SD模型对冻融猪肉糜的鉴别能力较强,可为工业化在线检测方法的开发提供技术支撑。
-
关键词
猪肉糜
冻融次数
近红外光谱
子空间判别
混淆矩阵
-
Keywords
minced pork
freeze-thaw times
near infrared spectroscopy
subspace discriminat
confusion matrix
-
分类号
O657.33
[理学—分析化学]
TS251.51
[理学—化学]
-