The decompositional characterizations of the weighted Herz spaces on Rn are established. Using this decomposition, the boundedness on the weighted Herz spaces for a large class of sublinear operators is studied.
This paper mainly studies the existence of positive solutions of singular sub-linear boundary value problems concerning the generalized Emden-Fowler equations. Anecessary and sufficient condition for the existence of ...This paper mainly studies the existence of positive solutions of singular sub-linear boundary value problems concerning the generalized Emden-Fowler equations. Anecessary and sufficient condition for the existence of positive solutions to this problemhas been obtained by using the method of lower and upper solutions with the fixed poilltt heorems.展开更多
Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X...Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.展开更多
The existence of Mather sets(generalized quasiperiodic solutions and uNlinked periodicsolutions)for sublinear Duffing equations is shown. Here the approach is based on the use ofaction-angle variables and the applicat...The existence of Mather sets(generalized quasiperiodic solutions and uNlinked periodicsolutions)for sublinear Duffing equations is shown. Here the approach is based on the use ofaction-angle variables and the application of a generalized version of Aubry-Mather theoremon semi-cylinder with finite twist assumption.展开更多
Some oscillation criteria are established by Raccati transformation techniques for the following second-order nonlinear neutral difference equation △(pn(△(Xn + CnXn-τ))^γ) + qnX^Bn-σ = 0, n :0, 1, 2...wh...Some oscillation criteria are established by Raccati transformation techniques for the following second-order nonlinear neutral difference equation △(pn(△(Xn + CnXn-τ))^γ) + qnX^Bn-σ = 0, n :0, 1, 2...which extend and include several oscillation criteria in [11], and also correct a theorem and its proof in [10].展开更多
We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
In this paper, we prove that for a sublinear expectation ?[·] defined on L 2(Ω, $ \mathcal{F} $ ), the following statements are equivalent: ? is a minimal member of the set of all sublinear expectations defined ...In this paper, we prove that for a sublinear expectation ?[·] defined on L 2(Ω, $ \mathcal{F} $ ), the following statements are equivalent: ? is a minimal member of the set of all sublinear expectations defined on L 2(Ω, $ \mathcal{F} $ )? is linearthe two-dimensional Jensen’s inequality for ? holds.Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.展开更多
In this paper, we present some multi-dimensional central limit theorems and laws of large numbers under sublinear expectations, which extend some previous results.
With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a mom...With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a moment inequality for a sequence of IID random variables under sublinear expectations. As an application of this inequality,we get the following result:For any continuous functionsatisfying the growth condition |(x) | C(1 + |x|p) for some C > 0,p 1 depending on ,the central limit theorem under sublinear expectations obtained by Peng still holds.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
In 2007, Peng introduced Ito integral with respect to G-Brownian motion and the related Ito's formula in G-expectation space. Motivated by the properties of multiple Wiener integral obtained by Ito in 1951, we introd...In 2007, Peng introduced Ito integral with respect to G-Brownian motion and the related Ito's formula in G-expectation space. Motivated by the properties of multiple Wiener integral obtained by Ito in 1951, we introduce multiple G-Ito integral in G-expectation space, and investigate how to calculate it. Furthermore, We establish a relationship between Hermite polynomials and multiple G-Ito integrals.展开更多
The alternating direction method of multipliers(ADMM)is widely used in solving structured convex optimization problems.Despite its success in practice,the convergence of the standard ADMM for minimizing the sum of N(N...The alternating direction method of multipliers(ADMM)is widely used in solving structured convex optimization problems.Despite its success in practice,the convergence of the standard ADMM for minimizing the sum of N(N≥3)convex functions,whose variables are linked by linear constraints,has remained unclear for a very long time.Recently,Chen et al.(Math Program,doi:10.1007/s10107-014-0826-5,2014)provided a counter-example showing that the ADMM for N≥3 may fail to converge without further conditions.Since the ADMM for N≥3 has been very successful when applied to many problems arising from real practice,it is worth further investigating under what kind of sufficient conditions it can be guaranteed to converge.In this paper,we present such sufficient conditions that can guarantee the sublinear convergence rate for the ADMM for N≥3.Specifically,we show that if one of the functions is convex(not necessarily strongly convex)and the other N-1 functions are strongly convex,and the penalty parameter lies in a certain region,the ADMM converges with rate O(1/t)in a certain ergodic sense and o(1/t)in a certain non-ergodic sense,where t denotes the number of iterations.As a by-product,we also provide a simple proof for the O(1/t)convergence rate of two-blockADMMin terms of both objective error and constraint violation,without assuming any condition on the penalty parameter and strong convexity on the functions.展开更多
An existence theorem for the solution to the equation -△u+b(x)u=f(x,u),in R^N is given by means of variational method where b(x)→∞,as丨x丨→∞ and f(x,s)has linear growth in s at infinity and sublinear growth in s ...An existence theorem for the solution to the equation -△u+b(x)u=f(x,u),in R^N is given by means of variational method where b(x)→∞,as丨x丨→∞ and f(x,s)has linear growth in s at infinity and sublinear growth in s at zero.For a special case,some multiplicity result is proved.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘The decompositional characterizations of the weighted Herz spaces on Rn are established. Using this decomposition, the boundedness on the weighted Herz spaces for a large class of sublinear operators is studied.
基金supported by National Natural Science Foundation of China (Grant No.10771122)Natural Science Foundation of Shandong Province of China (Grant No.Y2006A08)National Basic Research Program of China (Grant No.2007CB814900)
文摘Under some weaker conditions,we give a central limit theorem under sublinear expectations,which extends Peng's central limit theorem.
文摘This paper mainly studies the existence of positive solutions of singular sub-linear boundary value problems concerning the generalized Emden-Fowler equations. Anecessary and sufficient condition for the existence of positive solutions to this problemhas been obtained by using the method of lower and upper solutions with the fixed poilltt heorems.
基金supported by the National Science Foundation of USA (Grant No. DMS 0400387)the University of Missouri Research Council (Grant No. URC-07-067)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425106)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. 04-0142)
文摘Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
文摘The existence of Mather sets(generalized quasiperiodic solutions and uNlinked periodicsolutions)for sublinear Duffing equations is shown. Here the approach is based on the use ofaction-angle variables and the application of a generalized version of Aubry-Mather theoremon semi-cylinder with finite twist assumption.
基金revised September 27,2005.Research support by Natural Science Foundation of China(10271043)
文摘Some oscillation criteria are established by Raccati transformation techniques for the following second-order nonlinear neutral difference equation △(pn(△(Xn + CnXn-τ))^γ) + qnX^Bn-σ = 0, n :0, 1, 2...which extend and include several oscillation criteria in [11], and also correct a theorem and its proof in [10].
基金supported by the National Natural Science Foundation of China(11171262)the Specialized Research Fund for the Doctoral Program of Higher Education (200804860048)
文摘We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
基金supported by National Basic Research Program of China (973 Program) (Grant No.2007CB814901) (Financial Risk)National Natural Science Foundation of China (Grant No. 10671111)
文摘In this paper, we prove that for a sublinear expectation ?[·] defined on L 2(Ω, $ \mathcal{F} $ ), the following statements are equivalent: ? is a minimal member of the set of all sublinear expectations defined on L 2(Ω, $ \mathcal{F} $ )? is linearthe two-dimensional Jensen’s inequality for ? holds.Furthermore, we prove a sandwich theorem for subadditive expectation and superadditive expectation.
基金Supported by NNSFC(Grant No.11371191)Jiangsu Province Basic Research Program(Natural Science Foundation)(Grant No.BK2012720)
文摘In this paper, we present some multi-dimensional central limit theorems and laws of large numbers under sublinear expectations, which extend some previous results.
基金supported in part by National Basic Research Program of China (973 Program) (Grant No. 2007CB814901)the Natural Science Foundation of Shandong Province (Grant No. ZR2009AL015)
文摘With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a moment inequality for a sequence of IID random variables under sublinear expectations. As an application of this inequality,we get the following result:For any continuous functionsatisfying the growth condition |(x) | C(1 + |x|p) for some C > 0,p 1 depending on ,the central limit theorem under sublinear expectations obtained by Peng still holds.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
文摘In 2007, Peng introduced Ito integral with respect to G-Brownian motion and the related Ito's formula in G-expectation space. Motivated by the properties of multiple Wiener integral obtained by Ito in 1951, we introduce multiple G-Ito integral in G-expectation space, and investigate how to calculate it. Furthermore, We establish a relationship between Hermite polynomials and multiple G-Ito integrals.
基金The research of S.-Q.Ma was supported in part by the Hong Kong Research Grants Council General Research Fund Early Career Scheme(No.CUHK 439513)The research of S.-Z.Zhang was supported in part by the National Natural Science Foundation(No.CMMI 1161242).
文摘The alternating direction method of multipliers(ADMM)is widely used in solving structured convex optimization problems.Despite its success in practice,the convergence of the standard ADMM for minimizing the sum of N(N≥3)convex functions,whose variables are linked by linear constraints,has remained unclear for a very long time.Recently,Chen et al.(Math Program,doi:10.1007/s10107-014-0826-5,2014)provided a counter-example showing that the ADMM for N≥3 may fail to converge without further conditions.Since the ADMM for N≥3 has been very successful when applied to many problems arising from real practice,it is worth further investigating under what kind of sufficient conditions it can be guaranteed to converge.In this paper,we present such sufficient conditions that can guarantee the sublinear convergence rate for the ADMM for N≥3.Specifically,we show that if one of the functions is convex(not necessarily strongly convex)and the other N-1 functions are strongly convex,and the penalty parameter lies in a certain region,the ADMM converges with rate O(1/t)in a certain ergodic sense and o(1/t)in a certain non-ergodic sense,where t denotes the number of iterations.As a by-product,we also provide a simple proof for the O(1/t)convergence rate of two-blockADMMin terms of both objective error and constraint violation,without assuming any condition on the penalty parameter and strong convexity on the functions.
基金This research is supported by N.N.S.F.C.and Z.N.S.F.
文摘An existence theorem for the solution to the equation -△u+b(x)u=f(x,u),in R^N is given by means of variational method where b(x)→∞,as丨x丨→∞ and f(x,s)has linear growth in s at infinity and sublinear growth in s at zero.For a special case,some multiplicity result is proved.