期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lithium Isotopic Geochemistry in Subduction Zones:Retrospects and Prospects 被引量:1
1
作者 WAN Hongqiong SUN He +1 位作者 LIU Haiyang XIAO Yilin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期688-710,共23页
Subduction zones involve many complex geological processes, including the release of slabderived fluids, fluid/rock interactions, partial melting, isotopic fractionations, elemental transporting, and crust/mantle inte... Subduction zones involve many complex geological processes, including the release of slabderived fluids, fluid/rock interactions, partial melting, isotopic fractionations, elemental transporting, and crust/mantle interactions. Lithium(Li) isotopes(~6Li and ~7Li) have relative mass difference up to 16%, being the largest among metal elements. Thus, Li isotopes have advantage to interprete trace various geological processes. Most importantly, during crust/mantle interactions in deep subduction zones, surface materials and mantle rocks usually have distinct Li isotopic compositions. Li isotopes can be potential tracer for subduction processes, from the onset of subduction to the release of Li from subducted slabs and interaction with mantle wedge, as well as the fate of Li in slab-derived fluids and residual slabs. Moreover, the Li isotopic composition of subducting output materials can provide useful information for understanding global Li circulation. With developments in measurement and expansion of Li isotopic database, Li isotopic geochemistry will provide more inference and be a powerful tracer for understanding subduction-related processes. This work retrospected the application of Li isotopes in tracing successive subduction processes, and made some prospects for further studies of Li isotopes. 展开更多
关键词 subduction zone Li isotopes subduction-related processes Li geological tracer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部