期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于深层残差网络的加速图像超分辨率重建 被引量:33
1
作者 席志红 侯彩燕 +1 位作者 袁昆鹏 薛卓群 《光学学报》 EI CAS CSCD 北大核心 2019年第2期89-98,共10页
针对目前卷积神经网络的超分辨率算法存在卷积层数少、模型简单、计算量大、收敛速度慢以及图像纹理模糊等问题,提出了一种基于深层残差网络的加速图像超分辨率重建方法,该方法在提高图像分辨率的同时加快收敛速度。设计更深的卷积神经... 针对目前卷积神经网络的超分辨率算法存在卷积层数少、模型简单、计算量大、收敛速度慢以及图像纹理模糊等问题,提出了一种基于深层残差网络的加速图像超分辨率重建方法,该方法在提高图像分辨率的同时加快收敛速度。设计更深的卷积神经网络模型来提高精确度,通过残差学习并且使用Adam优化方法使网络模型加速收敛。在原始低分辨率图像上直接进行特征映射,只在网络的末端引入子像素卷积层,将像素进行重新排列,得到高分辨率图像。实验结果表明,在set 5,set 14,BSD100测试集上,所提算法的峰值信噪比与结构相似性指数均高于现有的几种算法,能够恢复更多的图像细节,图像边缘也更加完整且收敛速度更快。 展开更多
关键词 图像处理 超分辨率 深度学习 卷积神经网络 残差网络 子像素卷积
原文传递
基于改进卷积神经网络的单幅图像超分辨率重建方法 被引量:26
2
作者 刘月峰 杨涵晰 +1 位作者 蔡爽 张晨荣 《计算机应用》 CSCD 北大核心 2019年第5期1440-1447,共8页
对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次... 对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.006 6。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。 展开更多
关键词 单幅图像超分辨率重建 深度学习 卷积神经网络 多通道卷积 亚像素卷积
下载PDF
基于多尺度递归网络的图像超分辨率重建 被引量:25
3
作者 吴磊 吕国强 +2 位作者 薛治天 盛杰超 冯奇斌 《光学学报》 EI CAS CSCD 北大核心 2019年第6期82-89,共8页
提出了一种基于多尺度递归网络的图像超分辨率网络模型,该模型主要由多个多尺度特征映射单元级联而成,每个单元分别包含一组不同尺度的特征提取层、一个融合层以及一个特征映射层。特征提取直接在原始低分辨率图像上进行,最后采用亚像... 提出了一种基于多尺度递归网络的图像超分辨率网络模型,该模型主要由多个多尺度特征映射单元级联而成,每个单元分别包含一组不同尺度的特征提取层、一个融合层以及一个特征映射层。特征提取直接在原始低分辨率图像上进行,最后采用亚像素卷积重构高分辨率图像。训练阶段使用自适应矩估计优化方法加速网络模型的收敛。实验结果表明,所提算法取得了较好的超分辨率结果,图像纹理清晰、边缘锐利,视觉效果明显得到增强。在Set5、Set14、BSD100以及Urban100等常用测试集上的客观评价指标(PSNR和SSIM)均高于现有的几种主流算法。 展开更多
关键词 图像处理 超分辨率 多尺度特征 卷积神经网络 亚像素卷积
原文传递
超低照度下微光图像的深度卷积自编码网络复原 被引量:23
4
作者 刘超 张晓晖 《光学精密工程》 EI CAS CSCD 北大核心 2018年第4期951-961,共11页
微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测... 微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测和识别率,提出了一种基于卷积自编码网络的微光图像复原方法,利用卷积自编码网络从微光图像训练集中学习超低照度下微光图像特征,实现去噪和对比度增强。实验结果表明,本文提出的方法得到的峰值信噪比(Peak Signal to Noise Ratio,PSNR)较经典的BM3D算法平均提高1.67dB,结构相似度(Structural Similarity Index,SSIM)的值平均提高0.063,均方根对比度的值(Root Mean Square Contrast,RMSC)平均提高0.19。对微光图像复原具有很好的效果,能够有效地提高信噪比和对比度水平。 展开更多
关键词 微光图像 图像复原 卷积神经网络 图像去噪 子像素卷积
下载PDF
基于残差通道注意力网络的医学图像超分辨率重建方法 被引量:17
5
作者 刘可文 马圆 +6 位作者 熊红霞 严泽军 周志军 刘朝阳 房攀攀 李小军 陈亚雷 《激光与光电子学进展》 CSCD 北大核心 2020年第2期153-161,共9页
针对医学图像超分辨率重建过程中高频信息缺失导致的模糊问题,提出了一种基于残差通道注意力网络的医学图像超分辨率方法。提出的方法在残差网络的基本单元上去除了批规范化层以稳定训练;去掉缩放层、添加通道注意力块,使神经网络更加... 针对医学图像超分辨率重建过程中高频信息缺失导致的模糊问题,提出了一种基于残差通道注意力网络的医学图像超分辨率方法。提出的方法在残差网络的基本单元上去除了批规范化层以稳定训练;去掉缩放层、添加通道注意力块,使神经网络更加关注含有丰富高频信息的通道;使用亚像素卷积层进行上采样操作得到最终输出的高分辨率图像。实验结果表明,提出的方法相比主流的图像超分辨率方法在客观评价指标如峰值信噪比和结构相似性上有显著提升,得到的医学图像纹理细节丰富,视觉体验较好。 展开更多
关键词 图像处理 医学图像处理 图像超分辨率 残差网络 通道注意力机制 亚像素卷积
原文传递
4K-DMDNet:diffraction model-driven network for 4K computer-generated holography 被引量:10
6
作者 Kexuan Liu Jiachen Wu +1 位作者 Zehao He Liangcai Cao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期17-29,共13页
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training dataset... Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm. 展开更多
关键词 computer-generated holography deep learning model-driven neural network sub-pixel convolution OVERSAMPLING
下载PDF
一种基于深度卷积神经网络的水下光电图像质量优化方法 被引量:12
7
作者 张清博 张晓晖 韩宏伟 《光学学报》 EI CAS CSCD 北大核心 2018年第11期88-96,共9页
由于水体对光的吸收和散射,水下光电图像具有低信噪比、低对比度等特点,导致目标难以识别,限制了水下光电成像装备的实际应用和发展。为提高目标的探测精度和识别率,提出包含一维并行卷积和子像素卷积的深度卷积神经网络,利用其从水下... 由于水体对光的吸收和散射,水下光电图像具有低信噪比、低对比度等特点,导致目标难以识别,限制了水下光电成像装备的实际应用和发展。为提高目标的探测精度和识别率,提出包含一维并行卷积和子像素卷积的深度卷积神经网络,利用其从水下光电图像训练集中学习优化图像质量的参数,实现了去噪和对比度增强。实验结果表明,相比于经典去噪方法和对比度增强方法联合处理的结果,本文方法得到的峰值信噪比和均方根对比度分别平均提高了2.93 dB和14.41,能够有效地权衡去噪、对比度增强和亮度提升等,获得适合人眼视觉感受的图像,且处理单幅图像的平均速度是经典方法的9.46倍。利用测试集对网络进行测试,其在一定范围内较好地优化了图像质量,具有一定的泛化特性。 展开更多
关键词 图像处理 水下光电图像 噪声 低对比度 卷积神经网络 子像素卷积
原文传递
图像超分辨率卷积神经网络加速算法 被引量:10
8
作者 刘超 张晓晖 胡清平 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第2期91-97,共7页
为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨... 为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨率图像的映射,计算成本为原来的1/k2(k为放大因子)。在Set5数据集上的实验表明,所提模型的速度较经典的图像超分辨率重建算法速度提高了25. 8倍,能够在通用GPU上实时运行,峰值信噪比平均提高了0. 17 dB,并且参数只有它的35%。 展开更多
关键词 卷积神经网络 超分辨率重建 深度可分离卷积 子像素卷积
下载PDF
基于深度跳跃级联的图像超分辨率重建 被引量:10
9
作者 袁昆鹏 席志红 《光学学报》 EI CAS CSCD 北大核心 2019年第7期235-244,共10页
针对模型VDSR(very deep super resolution)收敛速度慢,训练前需要对原始图像进行预处理,以及网络中存在的冗余性等问题,提出了一种基于深度跳跃级联的单幅图像超分辨率重建(DCSR)算法。DCSR算法省去了图像预处理,直接在低分辨率图像上... 针对模型VDSR(very deep super resolution)收敛速度慢,训练前需要对原始图像进行预处理,以及网络中存在的冗余性等问题,提出了一种基于深度跳跃级联的单幅图像超分辨率重建(DCSR)算法。DCSR算法省去了图像预处理,直接在低分辨率图像上提取浅层特征,并使用亚像素卷积对图像进行放大;通过使用跳跃级联块可以充分利用每个卷积层提取到图像特征,实现特征重用,减少网络的冗余性。网络的跳跃级联块可以直接从输出到每一层建立短连接,加快网络的收敛速度,缓解梯度消失问题。实验结果表明,在几种公开数据集上,所提算法的峰值信噪比、结构相似度值均高于现有的几种算法,充分证明了所提算法的出色性能。 展开更多
关键词 机器视觉 超分辨率 深度学习 跳跃级联 梯度消失 特征复用 亚像素卷积 冗余性
原文传递
基于高斯模糊的CNN的单幅图像超分辨率重建算法 被引量:7
10
作者 张华成 纪飞 +1 位作者 钟晓雄 陆瑛 《计算机应用与软件》 北大核心 2022年第1期231-235,295,共6页
近几年卷积神经网络在单幅图像超分辨率重建工作中取得了很大的进步,但是大部分基于卷积神经网络(CNN)的单幅图像超分辨重建算法是建立在低分辨率图像由高分辨率图像通过双三次插值法下采样取得的前提下,当这个假设不成立时,图像重建的... 近几年卷积神经网络在单幅图像超分辨率重建工作中取得了很大的进步,但是大部分基于卷积神经网络(CNN)的单幅图像超分辨重建算法是建立在低分辨率图像由高分辨率图像通过双三次插值法下采样取得的前提下,当这个假设不成立时,图像重建的客观评价指标PSNR以及主观的视觉效果就会较差。针对此问题,提出一种基于高斯模糊的CNN的单幅图像超分辨率重建算法,通过在图像输入网络前,将原始低分辨率图像与高斯模糊核进行卷积,并进行低频信息融合以增强网络的泛化能力,使用亚像素卷积法把图像上采样到目标图像大小,进而消减网络的参数数量,提升运算速度。实验结果表明,该算法在不同放大倍数下的重建效果均优于传统算法。 展开更多
关键词 单幅图像超分辨率重建 卷积神经网络 高斯模糊核 亚像素卷积
下载PDF
多层级特征融合结构的单目图像深度估计网络 被引量:6
11
作者 贾瑞明 李阳 +2 位作者 李彤 崔家礼 王一丁 《计算机工程》 CAS CSCD 北大核心 2020年第12期207-214,共8页
采用卷积神经网络对单目图像的深度进行估计时,存在深度信息不精确、边缘模糊以及细节缺失等问题。为此,提出一种多层级特征融合结构的深度卷积网络。该网络采用端到端的编-解码器结构,编码器使用ResNet101网络结构将图像转换为高维特征... 采用卷积神经网络对单目图像的深度进行估计时,存在深度信息不精确、边缘模糊以及细节缺失等问题。为此,提出一种多层级特征融合结构的深度卷积网络。该网络采用端到端的编-解码器结构,编码器使用ResNet101网络结构将图像转换为高维特征图,解码器使用上采样卷积模块从高维特征图中重建出深度图像,并对编码器与解码器中的不同层级特征进行融合。基于NYUv2数据集与KITTI数据集的实验结果表明,相比其他先进网络,该网络不仅能预测出更加准确的深度信息,而且能保持预测深度图像的边缘信息。 展开更多
关键词 单目图像 深度估计 编-解码器结构 多层级融合 亚像素卷积
下载PDF
基于改进YOLOv5的超分辨率和多尺度融合目标检测算法
12
作者 姚珊珊 王静宇 +3 位作者 郝斌 张飞 高鹭 任晓颖 《光电子.激光》 CAS CSCD 北大核心 2024年第8期793-802,共10页
为了提升目标检测算法在多尺度学习方面的能力,尤其是对小目标的检测能力,本文提出了一种基于改进YOLOv5的超分辨率和多尺度融合目标检测算法。首先,该算法使用子像素卷积代替原YOLOv5模型的上采样操作,提高图像的分辨率,并尽可能保留... 为了提升目标检测算法在多尺度学习方面的能力,尤其是对小目标的检测能力,本文提出了一种基于改进YOLOv5的超分辨率和多尺度融合目标检测算法。首先,该算法使用子像素卷积代替原YOLOv5模型的上采样操作,提高图像的分辨率,并尽可能保留小目标的信息。其次,使用并行快速多尺度融合(parallel fast multi-scale fusion, PFMF)模块实现深层特征和浅层特征的双向融合,将原YOLOv5算法的3尺度预测升级为4尺度预测,以此提高模型多尺度特征学习能力和对小目标的检测效果。实验结果表明,与YOLOv5s相比,改进后的模型在PASCAL VOC数据集中,mAP@0.5提高了2.8个百分点,mAP@0.5∶0.95提高了3.5个百分点;在MS COCO数据集中,mAP@0.5提高了4.3个百分点,mAP@0.5∶0.95提高了5.2个百分点。改进后的YOLOv5模型在多尺度检测,尤其是小目标的检测效果方面得到了提升,并具有一定的应用价值。 展开更多
关键词 目标检测 YOLOv5算法 子像素卷积 多尺度融合
原文传递
深度学习技术在工件自动检测中的应用 被引量:6
13
作者 刘信君 林浒 +1 位作者 郑飂默 王诗宇 《小型微型计算机系统》 CSCD 北大核心 2020年第4期710-714,共5页
本文针对实际生产中需要对工件进行自动检测,获取工件质心的问题,采用了边缘检测技术以及最小外接矩形算法对工件定位的方式,采用了BP神经网络完成相机标定.针对基于RCF的边缘检测技术生成边缘粗糙的问题,提出了一种RCF(Richer Convolut... 本文针对实际生产中需要对工件进行自动检测,获取工件质心的问题,采用了边缘检测技术以及最小外接矩形算法对工件定位的方式,采用了BP神经网络完成相机标定.针对基于RCF的边缘检测技术生成边缘粗糙的问题,提出了一种RCF(Richer Convolutional Features for Edge Detection)模型的优化方法,将每个阶段用于提升特征图分辨率的反卷积操作替换成可以生成更精细边缘、时间复杂度更低的亚像素卷积.针对相机标定过程中存在的诸多需要用复杂数学模型表达的非线性畸变,提出了一个BP神经网络来拟合复杂非线性映射,实现二维像素坐标到三维机器人基坐标系下坐标的映射,实验结果表明,误差可以控制在0.5mm之内,可以满足实际应用的需要. 展开更多
关键词 工件定位 边缘检测 RCF 亚像素卷积 相机标定 BP神经网络
下载PDF
基于特征融合的图像超分辨率 被引量:1
14
作者 端木春江 石亮 《计算机时代》 2023年第4期120-122,126,共4页
近年深度卷积神经网络在图像超分辨率领域取得了巨大成功。然而多数基于深度卷积神经的超分辨率模型不能很好地利用来自低分辨率图像的各级特征,从而导致相对较差的性能。本文采用全局特征融合的方法,对全局多层次特征进行联合学习,充... 近年深度卷积神经网络在图像超分辨率领域取得了巨大成功。然而多数基于深度卷积神经的超分辨率模型不能很好地利用来自低分辨率图像的各级特征,从而导致相对较差的性能。本文采用全局特征融合的方法,对全局多层次特征进行联合学习,充分利用各卷积通道特征,通过全局跳跃连接,使网络更注重高频信息的学习,并采用亚像素卷积实现上采样重建,取得了更好的效果。 展开更多
关键词 图像超分辨率 特征融合 卷积神经网络 亚像素卷积
下载PDF
基于Hessian矩阵的线结构光中心线提取方法研究 被引量:5
15
作者 李栋梁 唐阳山 +1 位作者 黄贤成 朱停仃 《汽车实用技术》 2017年第22期37-39,共3页
在现代工业产品制造过程中,线结构光扫描三维视觉系统已经在表面缺陷检测的许多方面得到运用,而线结构光扫描的关键要提取出模型的中心线。研究以Steger算法为前提,在线结构光条纹中心提取中引入了大模板高斯卷积递归得算法,提出了基于H... 在现代工业产品制造过程中,线结构光扫描三维视觉系统已经在表面缺陷检测的许多方面得到运用,而线结构光扫描的关键要提取出模型的中心线。研究以Steger算法为前提,在线结构光条纹中心提取中引入了大模板高斯卷积递归得算法,提出了基于Hessian矩阵的线结构光条纹中心线提取的快速算法。此算法借助于高斯卷积递归求得条纹各点矩阵,进而求出条纹各点法线方向,然后运用泰勒级数在法线方向求得条纹中心准确位置。这种方法不仅减小了以前算法的运算量,而且可以快速高效的提取出中心线。 展开更多
关键词 结构光视觉 光条 亚像素 高斯卷积
下载PDF
基于改进的LinkNet的苹果叶片图像分割算法 被引量:1
16
作者 朱世松 马婉丽 +3 位作者 赵理山 郑艳梅 郑先波 芦碧波 《浙江农业学报》 CSCD 北大核心 2023年第1期202-214,共13页
使用传统方式对苹果叶片进行图像分割进而测量叶片几何参数,虽精度尚可,但效率较低。针对该问题,提出一种基于深度学习语义分割模型和迁移学习的苹果叶片图像分割算法,完成对叶片的快速、准确分割。所提方法以LinkNet为基本网络结构,进... 使用传统方式对苹果叶片进行图像分割进而测量叶片几何参数,虽精度尚可,但效率较低。针对该问题,提出一种基于深度学习语义分割模型和迁移学习的苹果叶片图像分割算法,完成对叶片的快速、准确分割。所提方法以LinkNet为基本网络结构,进行了4个方面的改进:采用ResNet18作为编码器主干网络,融合迁移学习的思想加速模型拟合;减小编码解码块的数量,降低网络复杂度;改进通道约减方案,减少上采样中的参数量;使用子像素卷积进行上采样,降低计算量。结合焦点损失函数,将改进的LinkNet网络应用于标准苹果叶片数据集上。试验结果表明,所提算法的分割精度为97.27%,与原LinkNet相比精度相当;推理时间仅为7.82 ms,相较于原网络缩短39.89%;模型参数量和浮点数计算量大幅减少;且改进网络的推理速度远快于FCN、U-Net、DeepLabV3+等网络。所提算法在快速分割叶片主体的同时,还能较好地保持叶片边缘锯齿等细节特征,能够真正实现高效、精准地分割苹果叶片,为快速测量叶片面积和其他几何参数提供了新的思路。 展开更多
关键词 深度学习 语义分割 苹果叶片 LinkNet 子像素卷积
下载PDF
基于多尺度时域3D卷积的视频超分辨率重建 被引量:3
17
作者 唐晓天 马骏 +2 位作者 李峰 杨雪 梁亮 《图学学报》 CSCD 北大核心 2022年第1期53-59,共7页
视频超分辨率是一项很有实用价值的工作。针对超高清产业中高分辨率资源较为匮乏的问题,为了有效利用视频序列帧间丰富的时间相关性信息及空间信息,提出一种基于多尺度时域3D卷积的视频超分辨率重建算法。该算法将输入的低分辨率视频序... 视频超分辨率是一项很有实用价值的工作。针对超高清产业中高分辨率资源较为匮乏的问题,为了有效利用视频序列帧间丰富的时间相关性信息及空间信息,提出一种基于多尺度时域3D卷积的视频超分辨率重建算法。该算法将输入的低分辨率视频序列帧分别通过不同时间尺度的3D卷积进行时空特征提取,3D卷积能够同时对空间与时间建模,相较于2D卷积更加适用于视频任务的处理,通过不同尺度时域下提取的2种时空特征自适应运动补偿后,由亚像素卷积层执行分辨率的提升并与上采样后的输入帧相加后得到最终重建的高分辨率图像。在标准数据集上的实验结果表明,该算法无论在视觉效果上,还是峰值信噪比与结构相似性等客观质量评价指标上,均有显著地提升,优于FSRCNN和EDSR等算法。 展开更多
关键词 视频超分辨率 深度学习 3D卷积 多尺度时域特征 亚像素卷积
下载PDF
基于对偶学习策略的单图像超分辨率重建网络 被引量:3
18
作者 陈金玲 彭艳兵 李念 《计算机应用研究》 CSCD 北大核心 2021年第7期2235-2240,共6页
针对单图像低分辨率到高分辨率映射具有不适定性、特征图空间信息利用率低下以及网络参数量过大的问题,提出了一种基于渐进上采样的对偶学习算法用于图像的超分辨率重建。首先采用深度可分离卷积使得模型参数量显著减少;再基于亚像素卷... 针对单图像低分辨率到高分辨率映射具有不适定性、特征图空间信息利用率低下以及网络参数量过大的问题,提出了一种基于渐进上采样的对偶学习算法用于图像的超分辨率重建。首先采用深度可分离卷积使得模型参数量显著减少;再基于亚像素卷积构建渐进上采样网络来高效利用特征图上下文信息;最后利用对偶学习策略构建闭环反馈网络,通过对偶关系相互约束映射空间以获取最佳重建函数。在Set5、Set14、BSDS100、Urban100、Manga109基准数据集上与其他主流的超分辨率方法相比,该算法表现出更优越的性能:有效减少了网络9%的参数量,在×4、×8放大因子下能重建出更清晰的图像,同时能有效缓解图像边缘失真和伪影现象,并且×8放大时的平均峰值信噪比和结构相似度(PSNR/SSIM)分别为26.90/0.751、24.84/0.645、24.74/0.619、22.30/0.560、24.38/0.706。 展开更多
关键词 超分辨率重建 深度可分离卷积 渐进上采样 亚像素卷积 对偶学习
下载PDF
基于密集卷积神经网络的遥感影像超分辨率重建 被引量:4
19
作者 王植 李安翼 方锦雄 《测绘与空间地理信息》 2020年第8期4-8,共5页
针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像... 针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像的高阶表示,获得更具有表达能力的深层特征;同时,在网络中采用并行的1×1卷积滤波器结构,通过该结构减少模型参数;在重建网络中使用亚像素卷积可以更快地实现特征图的重建。在UCMerced_LandUse公共数据集上的实验表明:本文的网络模型提升了传统深度网络的影像重建性能,增强了重建图像的纹理细节并改善影像边缘失真,提升了重建影像的性能。 展开更多
关键词 遥感影像 超分辨率重建 密集卷积网络 并行卷积神经网络 亚像素卷积
下载PDF
改进YOLOv5的轻量化交通标志检测算法
20
作者 贾子豪 王文青 刘光灿 《数据采集与处理》 CSCD 北大核心 2023年第6期1434-1444,共11页
随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注... 随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注意力机制,可以使模型更加突出目标特征。在检测层前加入一种轻量化的亚像素卷积层,在不增加计算量的基础上,有效地提高检测特征图的分辨率。对损失函数CIoU(Complete intersection over union)加以改进,加快了网络的收敛速度,并且收敛效果较改进前有了一定提升。实验结果表明,本文模型准确率可达到90.6%,较基础网络提高了14.5%,检测速度可达到70帧/s,基本满足对交通标志的实时精准检测。 展开更多
关键词 目标检测 轻量化 注意力机制 亚像素卷积 特征融合
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部