The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten ...The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten by sintering process at 1300 ℃,which was performed at 1000 ℃ for 2 h,then raised the temperature at the rate of 50 ℃ / h to 1400 ℃,then decreased directly to 1300 ℃ in 30 minutes,finally at 1300 ℃ for 5-20 hours.The ratio of bigger grain size becomes larger as the holding time increasing at 1300 ℃.The grains less than 1 μm are about 50%,eg,43.2%,52.2% and 51.1% related to 1300 ℃ holding 5 hours,8 hours and 10 hours,respectively.As YSZ grain size became small,the electrical conductivities did not decrease,even increased,about 0.20 s/cm at 1000 ℃.The reduced sintering temperature and time were benefited to co-fire with the electrodes in electrode-supported SOFCs.展开更多
基金Funded by the National Natural Science Foundation of China (NSFC)(No. 50730004)the New Century Elitist Project (No. NCET-06-0203)
文摘The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten by sintering process at 1300 ℃,which was performed at 1000 ℃ for 2 h,then raised the temperature at the rate of 50 ℃ / h to 1400 ℃,then decreased directly to 1300 ℃ in 30 minutes,finally at 1300 ℃ for 5-20 hours.The ratio of bigger grain size becomes larger as the holding time increasing at 1300 ℃.The grains less than 1 μm are about 50%,eg,43.2%,52.2% and 51.1% related to 1300 ℃ holding 5 hours,8 hours and 10 hours,respectively.As YSZ grain size became small,the electrical conductivities did not decrease,even increased,about 0.20 s/cm at 1000 ℃.The reduced sintering temperature and time were benefited to co-fire with the electrodes in electrode-supported SOFCs.