期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS 被引量:2
1
作者 陈化 陈洪葛 +1 位作者 段忆芮 胡鑫 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1653-1664,共12页
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande... Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω. 展开更多
关键词 Dirichlet eigenvalues finitely degenerate elliptic operators HSrmander's con-dition sub-elliptic estimate Grushin type operator
下载PDF
Lower Bounds of Dirichlet Eigenvalues for General Grushin Type Bi-Subelliptic Operators
2
作者 Hua Chen Hongge Chen +1 位作者 Junfang Wang Nana Zhang 《Analysis in Theory and Applications》 CSCD 2019年第1期66-84,共19页
Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we den... Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we denoteλk as the k-th eigenvalue for the bi-subelliptic operator△X2^2 onΩ.In this paper,by using the sharp sub-elliptic estimates and maximally hypoeliptic estimates,we give the optimal lower bound estimates ofλk for the operatork△X^2. 展开更多
关键词 Eigenvalues DEGENERATE elliptic operators sub-elliptic estimate MAXIMALLY hypoelliptic estimate bi-subelliptic operator
原文传递
Dirichlet Problems for the Quasilinear Second Order Subelliptic Equations 被引量:1
3
作者 Xu Chaojiang Department of Mathematics Wuhan University Wuhan, 430072 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第1期18-32,共15页
In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(X~*(A(x,u)Xu)+sum from j=1 to m(B(x,u)Xu+C(x,u)=0 in Ω, u=φ on Ω,where X={X, …, ... In this paper, we study the Dirichlet problems for the following quasilinear secondorder sub-elliptic equation, sum from i,j=1 to m(X~*(A(x,u)Xu)+sum from j=1 to m(B(x,u)Xu+C(x,u)=0 in Ω, u=φ on Ω,where X={X, …, X} is a system of real smooth vector fields which satisfies the Hrmander’scondition, A(i,j), B, C∈C~∞(■×R) and (A(x, z)) is a positive definite matris. We have provedthe existence and the maximal regularity of solutions in the "non-isotropic" Hlder space associatedwith the system of vector fields X. 展开更多
关键词 sub-elliptic equation Dirichlet problem A priori estimate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部