One of the aims in survey sampling is to search for the estimators with highest efficiency. In the present paper, three improved estimators of population mean have been proposed using some non-traditional measures of ...One of the aims in survey sampling is to search for the estimators with highest efficiency. In the present paper, three improved estimators of population mean have been proposed using some non-traditional measures of dispersion of auxiliary variable such as Gini’s mean difference, Downton’s method and probability weighted moments early given by Abid [1] with a special population parameter of auxiliary variable. The large sample properties that are biased and mean squared errors of the proposed estimators have been derived up to the first order of approximation. A theoretical comparison of the proposed estimators has been made with the other existing estimators of population mean using auxiliary information. The conditions under which the proposed estimators perform better than the other existing estimators of population mean have been given. A numerical study is also carried out to see the performances of the proposed and existing estimators of population mean and verify the conditions under which proposed estimators are better than other estimators. It has been shown that the proposed estimators perform better than the existing estimators as they are having lesser mean squared error.展开更多
In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an au...In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties have been derived up to first order of Taylor’s series expansion. The efficiency conditions derived theoretically under which the proposed estimator performs better than existing estimators. Empirical studies have been done using real populations to demonstrate the performance of the developed estimator in comparison with the existing estimators. The proposed estimator as illustrated by the empirical studies performs better than the existing estimators under some specified conditions i.e. it has the smallest Mean Squared Error and the highest Percentage Relative Efficiency. The developed estimator therefore is suitable to be applied to situations in which the variable of interest has a positive correlation with the auxiliary variable.展开更多
This paper proposes some exponential ratio type estimators of population mean under the situations when certain observations for some sampling units are missing. These missing observations may be for either auxiliary ...This paper proposes some exponential ratio type estimators of population mean under the situations when certain observations for some sampling units are missing. These missing observations may be for either auxiliary variable or study variable. The biases and mean square errors of the proposed estimators have been derived, up to the first order of approximation. The proposed estimators are compared theoretically with that of the existing ratio type estimators defined by [1]. It has been found that the proposed exponential ratio type estimators perform better than the mean per unit estimator even for the low positive correlation between study variable and auxiliary variable. Moreover, we obtained the conditions for which our proposed estimators are better than the corresponding ratio type estimators of [1]. To verify the theoretical results obtained, a simulation study is carried out finally.展开更多
文摘One of the aims in survey sampling is to search for the estimators with highest efficiency. In the present paper, three improved estimators of population mean have been proposed using some non-traditional measures of dispersion of auxiliary variable such as Gini’s mean difference, Downton’s method and probability weighted moments early given by Abid [1] with a special population parameter of auxiliary variable. The large sample properties that are biased and mean squared errors of the proposed estimators have been derived up to the first order of approximation. A theoretical comparison of the proposed estimators has been made with the other existing estimators of population mean using auxiliary information. The conditions under which the proposed estimators perform better than the other existing estimators of population mean have been given. A numerical study is also carried out to see the performances of the proposed and existing estimators of population mean and verify the conditions under which proposed estimators are better than other estimators. It has been shown that the proposed estimators perform better than the existing estimators as they are having lesser mean squared error.
文摘In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties have been derived up to first order of Taylor’s series expansion. The efficiency conditions derived theoretically under which the proposed estimator performs better than existing estimators. Empirical studies have been done using real populations to demonstrate the performance of the developed estimator in comparison with the existing estimators. The proposed estimator as illustrated by the empirical studies performs better than the existing estimators under some specified conditions i.e. it has the smallest Mean Squared Error and the highest Percentage Relative Efficiency. The developed estimator therefore is suitable to be applied to situations in which the variable of interest has a positive correlation with the auxiliary variable.
文摘This paper proposes some exponential ratio type estimators of population mean under the situations when certain observations for some sampling units are missing. These missing observations may be for either auxiliary variable or study variable. The biases and mean square errors of the proposed estimators have been derived, up to the first order of approximation. The proposed estimators are compared theoretically with that of the existing ratio type estimators defined by [1]. It has been found that the proposed exponential ratio type estimators perform better than the mean per unit estimator even for the low positive correlation between study variable and auxiliary variable. Moreover, we obtained the conditions for which our proposed estimators are better than the corresponding ratio type estimators of [1]. To verify the theoretical results obtained, a simulation study is carried out finally.