页岩气的生成和聚集具有不同于常规油气藏的独特规律,页岩气储层的研究是页岩气勘探与开发的核心问题。目前,对焦石坝地区页岩气储层的认识是相对有限的,需要对本区页岩气储层做进一步研究。基于大量实验室测试数据的统计分析显示:上奥...页岩气的生成和聚集具有不同于常规油气藏的独特规律,页岩气储层的研究是页岩气勘探与开发的核心问题。目前,对焦石坝地区页岩气储层的认识是相对有限的,需要对本区页岩气储层做进一步研究。基于大量实验室测试数据的统计分析显示:上奥陶统五峰组和下志留统龙马溪组目的层段总有机碳(TOC)含量介于0.55%~5.89%,平均为2.54%,且具有自上而下有机碳含量逐渐增加的趋势;基于全岩X-射线衍射分析方法,页岩中黏土矿物含量介于16.6%~62.8%,平均为40.9%,自上而下逐渐减少,脆性矿物含量自上而下逐渐增加,总量介于37.2%~83.4%,平均为59.1%;基于氦气注入法检测了目的层段的孔隙度,实测氦气孔隙度介于1.17%~7.98%,平均为4.61%,目的层段孔隙度呈现出'两高夹一低'的三分性特征;稳态法水平渗透率介于0.002~335.209 m D,平均为23.785 m D;通过高压压汞法对储层孔隙结构进行了研究,大量的测试数据表明,介孔级别的孔隙发育,且介孔提供了主要的孔比表面积,而介孔和大孔对渗透率起主要的贡献;将氩离子剖光技术和扫描电镜(SEM)相结合对储层的孔隙类型进行了观察,总体表现为自上而下有机孔隙增加、无机孔隙减少;由解吸法测得总含气量介于0.44~5.19 m3/t,平均为1.97 m3/t,从上到下呈现出逐渐增大的趋势。研究表明,焦页1井海相页岩气储层发育的控制因素有矿物组成和有机质发育特征等。TOC是控制下部储层段的主要内在因素,也是提供页岩气储存空间的重要物质;成岩阶段晚期,黏土矿物组合发生变化,蒙脱石向伊利石转变,形成新的微孔隙,增加了储层的孔隙度,对上部储层段有较大影响;脆性矿物含量大于50%,易于形成裂缝,可造成地层渗透性能的显著增强。总体来看,五峰组和龙马溪组的底部层段是优质储层,也是主要的产气层段。展开更多
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p...The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from展开更多
There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can ...There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid–nitrogen absorption methods, the charac-teristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combin-ing with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore struc-tures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamor-phic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different tem-perature and stress effect of nano-scale deformation in tec-tonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure be-comes stronger, and ordering degree of C-nets and the ar-rangement of BSU are obviously enhanced. For the deforma-tion of nano-scale pore structure, in the same metamor-phic-deformed environment, along with the strengthening of stress, the ratio of mesopores to its total pores volume of tec-toni展开更多
文摘页岩气的生成和聚集具有不同于常规油气藏的独特规律,页岩气储层的研究是页岩气勘探与开发的核心问题。目前,对焦石坝地区页岩气储层的认识是相对有限的,需要对本区页岩气储层做进一步研究。基于大量实验室测试数据的统计分析显示:上奥陶统五峰组和下志留统龙马溪组目的层段总有机碳(TOC)含量介于0.55%~5.89%,平均为2.54%,且具有自上而下有机碳含量逐渐增加的趋势;基于全岩X-射线衍射分析方法,页岩中黏土矿物含量介于16.6%~62.8%,平均为40.9%,自上而下逐渐减少,脆性矿物含量自上而下逐渐增加,总量介于37.2%~83.4%,平均为59.1%;基于氦气注入法检测了目的层段的孔隙度,实测氦气孔隙度介于1.17%~7.98%,平均为4.61%,目的层段孔隙度呈现出'两高夹一低'的三分性特征;稳态法水平渗透率介于0.002~335.209 m D,平均为23.785 m D;通过高压压汞法对储层孔隙结构进行了研究,大量的测试数据表明,介孔级别的孔隙发育,且介孔提供了主要的孔比表面积,而介孔和大孔对渗透率起主要的贡献;将氩离子剖光技术和扫描电镜(SEM)相结合对储层的孔隙类型进行了观察,总体表现为自上而下有机孔隙增加、无机孔隙减少;由解吸法测得总含气量介于0.44~5.19 m3/t,平均为1.97 m3/t,从上到下呈现出逐渐增大的趋势。研究表明,焦页1井海相页岩气储层发育的控制因素有矿物组成和有机质发育特征等。TOC是控制下部储层段的主要内在因素,也是提供页岩气储存空间的重要物质;成岩阶段晚期,黏土矿物组合发生变化,蒙脱石向伊利石转变,形成新的微孔隙,增加了储层的孔隙度,对上部储层段有较大影响;脆性矿物含量大于50%,易于形成裂缝,可造成地层渗透性能的显著增强。总体来看,五峰组和龙马溪组的底部层段是优质储层,也是主要的产气层段。
基金supported by the National Natural Science Foundation of China(Grant No.40772135,4097213141030422)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05030100)National Science and Technology Major Project(No.2011ZX05060-005).
文摘The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from
基金This work was supported by the National Key Development Plan Project of Basic Research(973 Plan)(Grant No.2002CB211704)the National N atural Science Foundation of China(Grant No.40172058)+1 种基金China Postdoctoral Science Foundation(Grant No.200403508)Kuancheng Wang Post-doctoral Research Award Fund of Chinese Academy of Sciences.
文摘There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid–nitrogen absorption methods, the charac-teristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combin-ing with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore struc-tures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamor-phic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different tem-perature and stress effect of nano-scale deformation in tec-tonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure be-comes stronger, and ordering degree of C-nets and the ar-rangement of BSU are obviously enhanced. For the deforma-tion of nano-scale pore structure, in the same metamor-phic-deformed environment, along with the strengthening of stress, the ratio of mesopores to its total pores volume of tec-toni