The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinea...The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.展开更多
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations ...This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.展开更多
基金National Natural Science Foundation of China(90716006, 10902006)Research Fund for the Doctoral Program of Higher Education of China (20091102110015)
文摘The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.
基金Supported by:Pacific Earthquake Engineering Research Center Lifelines Program Under Project Task No.9C
文摘This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.