Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make ...Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.展开更多
为了解决振动台子结构试验加载方式复杂的问题,以主动质量驱动器(active mass driver,AMD)装置作为振动台子结构试验的加载设备,以多参量反馈控制作为基本控制算法,以容易产生底部破坏的剪切型框架结构为试验研究对象,通过理论推导、数...为了解决振动台子结构试验加载方式复杂的问题,以主动质量驱动器(active mass driver,AMD)装置作为振动台子结构试验的加载设备,以多参量反馈控制作为基本控制算法,以容易产生底部破坏的剪切型框架结构为试验研究对象,通过理论推导、数值仿真以及与PID位移控制进行对比来探讨这种试验方法的可行性、试验效果,以及试验设计的原则和方法.研究表明,多参量控制算法可以显著提高振动台子结构试验的控制精度.展开更多
基金supported by the National Science Foundation of China(61333009,61473317,61433002,61521063,61590924,61673366)the National High Technology Research and Development Program of China(2015AA043102)
文摘Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.
文摘为了解决振动台子结构试验加载方式复杂的问题,以主动质量驱动器(active mass driver,AMD)装置作为振动台子结构试验的加载设备,以多参量反馈控制作为基本控制算法,以容易产生底部破坏的剪切型框架结构为试验研究对象,通过理论推导、数值仿真以及与PID位移控制进行对比来探讨这种试验方法的可行性、试验效果,以及试验设计的原则和方法.研究表明,多参量控制算法可以显著提高振动台子结构试验的控制精度.