We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of...We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of an abelian weakly nil-clean ring, and of a strongly nil-clean ring. As applications, this result is used to determine the 2-primal rings R such that the matrix ring Mn(R) is weakly nil-clean, and to show that the endomorphism ring EndD(V) over a vector space VD is weakly nil-clean if and only if it is nil-clean or dim(V) = 1 with D Z3.展开更多
文摘We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of an abelian weakly nil-clean ring, and of a strongly nil-clean ring. As applications, this result is used to determine the 2-primal rings R such that the matrix ring Mn(R) is weakly nil-clean, and to show that the endomorphism ring EndD(V) over a vector space VD is weakly nil-clean if and only if it is nil-clean or dim(V) = 1 with D Z3.
基金supported by NSFC(No.11471108)Natural Science Foundation of Hunan Province(Nos.2015JJ2051,2016JJ2050)+1 种基金Scientific Research Foundation of Hunan Provincial Education Department(No.12B101)the Teaching Reform Foundation of Hunan Province(No.G21316)
基金Supported in part by NSFC(No.11401009)Anhui Provincial Natural Science Foundation(No.1408085QA01)the Key Natural Science Foundation of Anhui Educational Committee(No.KJ2014A082)