A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally becaus...A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.展开更多
文摘电池组中单体间存在的不一致性是电池状态估计问题中的一大难点。针对串联锂离子电池组,提出了一种基于强跟踪滤波器(strong tracking filter,STF)与LevenbergMarquardt(LM)算法相结合的电池组不一致性辨识与状态估计的新方法。首先针对"参考单体"给出了一阶等效电路模型与开路电压–荷电状态(state of charge,SOC)特性关系曲线,通过STF算法得到其状态估计与参数估计;其次建立不同单体的"电压相似函数",并引入LM算法对SOC、极化电压、欧姆内阻3种不一致因素进行辨识;最后对2组5个LiFePO4单体串联的电池组在不同的工况下进行了实验验证。结果表明,所提方法对各单体的状态与内阻估计误差在合理的范围内,对电池组不一致性辨识与状态估计具有良好的效果。
基金the National Natural Science Foundationof China!( No. 697740 2 2 ) the State High-TechDevelopments Plan! ( 863 -5 11-84
文摘A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.