期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于对抗学习的强PUF安全结构研究
1
作者 李艳 刘威 孙远路 《网络与信息安全学报》 2021年第3期115-122,共8页
针对强物理不可复制函数(PUF,physical unclonable function)面临的机器学习建模威胁,基于对抗学习理论建立了强PUF的对抗机器学习模型,在模型框架下,通过对梯度下降算法训练过程的分析,明确了延迟向量权重与模型预测准确率之间的潜在联... 针对强物理不可复制函数(PUF,physical unclonable function)面临的机器学习建模威胁,基于对抗学习理论建立了强PUF的对抗机器学习模型,在模型框架下,通过对梯度下降算法训练过程的分析,明确了延迟向量权重与模型预测准确率之间的潜在联系,设计了一种基于延迟向量权重的对抗样本生成策略。该策略与传统的组合策略相比,将逻辑回归等算法的预测准确率降低了5.4%~9.5%,低至51.4%。结合资源占用量要求,设计了新策略对应的电路结构,并利用对称设计和复杂策略等方法对其进行安全加固,形成了ALPUF(adversarial learning PUF)安全结构。ALPUF不仅将机器学习建模的预测准确率降低至随机预测水平,而且能够抵御混合攻击和暴力破解。与其他PUF结构的对比表明,ALPUF在资源占用量和安全性上均具有明显优势。 展开更多
关键词 物理不可复制函数 对抗样本 延迟向量 对抗学习PUF
下载PDF
基于序列密码的强PUF抗机器学习攻击方法 被引量:6
2
作者 汪鹏君 连佳娜 陈博 《电子与信息学报》 EI CSCD 北大核心 2021年第9期2474-2481,共8页
物理不可克隆函数(Physical Unclonable Function, PUF)在信息安全领域具有极其重要的应用前景,然而也存在其自身安全受机器学习攻击等方面的不足。该文通过对PUF电路和密码算法的研究,提出一种基于序列密码的强PUF抗机器学习攻击方法... 物理不可克隆函数(Physical Unclonable Function, PUF)在信息安全领域具有极其重要的应用前景,然而也存在其自身安全受机器学习攻击等方面的不足。该文通过对PUF电路和密码算法的研究,提出一种基于序列密码的强PUF抗机器学习攻击方法。首先,通过构造滚动密钥生成器产生随机密钥,并与输入激励进行混淆;然后,将混淆后的激励通过串并转换电路作用于强PUF,产生输出响应;最后,利用Python软件仿真和FPGA硬件实现,并分析其安全性和统计特性。实验结果表明,当建模所用激励响应对(Challenge Response Pairs, CRPs)高达106组时,基于逻辑回归、人工神经网络和支持向量机的攻击预测率接近50%的理想值。此外,该方法通用性强、硬件开销小,且不影响PUF的随机性、唯一性以及可靠性。 展开更多
关键词 硬件安全 强物理不可克隆函数 序列密码 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部