This paper is concerned with travelling front solutions to a vector disease model with a spatio-temporal delay incorporated as an integral convolution over all the past time up to now and the whole one-dimensional spa...This paper is concerned with travelling front solutions to a vector disease model with a spatio-temporal delay incorporated as an integral convolution over all the past time up to now and the whole one-dimensional spatial domain R.When the delay kernel is assumed to be the strong generic kernel,using the linear chain techniques and the geometric singular perturbation theory,the existence of travelling front solutions is shown for small delay.展开更多
This paper is concerned with the diffusive Nicholson's blowflies equation with nonlocal delay incorporated as an integral convolution over the entire past time up to now and the whole one-dimensional spatial domain R...This paper is concerned with the diffusive Nicholson's blowflies equation with nonlocal delay incorporated as an integral convolution over the entire past time up to now and the whole one-dimensional spatial domain R. Assume that the delay kernel is a strong generic kernel. By the linear chain techniques and the geometric singular perturbation theory, the existence of travelling front solutions is shown for small delay.展开更多
基金Supported by the National Natural Science Foundation of China (10961017)
文摘This paper is concerned with travelling front solutions to a vector disease model with a spatio-temporal delay incorporated as an integral convolution over all the past time up to now and the whole one-dimensional spatial domain R.When the delay kernel is assumed to be the strong generic kernel,using the linear chain techniques and the geometric singular perturbation theory,the existence of travelling front solutions is shown for small delay.
基金Project supported by the National Natural Science Foundation of China (No. 10961017)the"Qing Lan" Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-05-20A)
文摘This paper is concerned with the diffusive Nicholson's blowflies equation with nonlocal delay incorporated as an integral convolution over the entire past time up to now and the whole one-dimensional spatial domain R. Assume that the delay kernel is a strong generic kernel. By the linear chain techniques and the geometric singular perturbation theory, the existence of travelling front solutions is shown for small delay.