A new linear yield criterion expressed by the geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane in Haigh-Westergaard space was introduced. The criterion was written in...A new linear yield criterion expressed by the geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane in Haigh-Westergaard space was introduced. The criterion was written in terms of the values of principal stress deviator and called GM yield criterion for short. Together with a Cartesian coordinate velocity field instead of the Avitzur's, the GM criterion was used to obtain an analytical solution for strip drawing. With a working example of the strip drawing through wedge-shaped die, the results of relative drawing stress calculated by the GM criterion were compared with those calculated by Mises' criterion from Avitzur formula. It indicated that the calculated results according to analytical solution were in good agreement with the numerical solution obtained from Avitzur formula.展开更多
Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investi...Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investigated during smelting and rolling process by composition design and technology control. The influence of parameters on chemical compositions, mechanical properties and microstructure was revealed by scanning electron microscope (SEM). The results show that, 1) main chemical components in SPHE are w(C)_〈40×10^-6, w(Si)_〈 0.01%, w(S)_〈0.009%, w(N)〈20×10^-6, w(O)〈_ 25×10^-6; 2) main mechanical properties of the SPHE are Crs=274 MPa, 00=334 MPa, A=48.9%; 3) main performances of deep drawing quality (DDQ) grade steel produced by SPHE are as follows, transversely crs=167 MPa, 00=298 MPa, n=0.219, r=2.46; vertically σs=166 MPa, 00=298 MPa, n=0.226, r=2.39; in 45° direction σ=171 MPa, 00=308 MPa, n=0.214, t=2.26; 4) microstrueture of DDQ is ferrite, average grain size is Grade 7.5, and inclusion size is 3-10μm.展开更多
Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pan...Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pancake-shaped grain flatness which is indicated as the ratio of grain diameter in the rolling direction (RD) and normal direction (ND) of sheets (dr/dn). A mathematical model ( r = e^0.345(dn^1/2-dr^1/2) ) was developed to calculate r-value by the microstructure of steel sheets hot-rolled by compact strip production (CSP). It is shown that the r-value is higher, if the microstructure of steel sheet is of pancake-shaped grains elongated in the rolling direction. The calculated r-value is confirmed to fit exactly to the measured one from the large-scale production.展开更多
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w...Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50474015)
文摘A new linear yield criterion expressed by the geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane in Haigh-Westergaard space was introduced. The criterion was written in terms of the values of principal stress deviator and called GM yield criterion for short. Together with a Cartesian coordinate velocity field instead of the Avitzur's, the GM criterion was used to obtain an analytical solution for strip drawing. With a working example of the strip drawing through wedge-shaped die, the results of relative drawing stress calculated by the GM criterion were compared with those calculated by Mises' criterion from Avitzur formula. It indicated that the calculated results according to analytical solution were in good agreement with the numerical solution obtained from Avitzur formula.
基金Project(50971135) supported by the National Natural Science Foundation of China
文摘Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investigated during smelting and rolling process by composition design and technology control. The influence of parameters on chemical compositions, mechanical properties and microstructure was revealed by scanning electron microscope (SEM). The results show that, 1) main chemical components in SPHE are w(C)_〈40×10^-6, w(Si)_〈 0.01%, w(S)_〈0.009%, w(N)〈20×10^-6, w(O)〈_ 25×10^-6; 2) main mechanical properties of the SPHE are Crs=274 MPa, 00=334 MPa, A=48.9%; 3) main performances of deep drawing quality (DDQ) grade steel produced by SPHE are as follows, transversely crs=167 MPa, 00=298 MPa, n=0.219, r=2.46; vertically σs=166 MPa, 00=298 MPa, n=0.226, r=2.39; in 45° direction σ=171 MPa, 00=308 MPa, n=0.214, t=2.26; 4) microstrueture of DDQ is ferrite, average grain size is Grade 7.5, and inclusion size is 3-10μm.
文摘Cold-rolled steel sheets in automotive applications require an excellent deep draw ability, which is characterized by the Lankford value (r-value). In this study, a correlation was identified between r-value and pancake-shaped grain flatness which is indicated as the ratio of grain diameter in the rolling direction (RD) and normal direction (ND) of sheets (dr/dn). A mathematical model ( r = e^0.345(dn^1/2-dr^1/2) ) was developed to calculate r-value by the microstructure of steel sheets hot-rolled by compact strip production (CSP). It is shown that the r-value is higher, if the microstructure of steel sheet is of pancake-shaped grains elongated in the rolling direction. The calculated r-value is confirmed to fit exactly to the measured one from the large-scale production.
文摘Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction.