In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing ...In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing equations are converted to an ordinary differential equation and then solved analytically.The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case.The similarity solution is always unique in the stretching case,and in the shrinking case the solution shows dual nature for certain values of the parameters.For stronger magnetic field,the similarity solution for the shrinking sheet case becomes unique.展开更多
This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a sim...This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.展开更多
We investigate the dual solutions for the MHD flow of micropolar fluid over a stretching/shrinking sheet with heat transfer. Suitable relations transform the partial differential equations into the ordinary differenti...We investigate the dual solutions for the MHD flow of micropolar fluid over a stretching/shrinking sheet with heat transfer. Suitable relations transform the partial differential equations into the ordinary differential equations.Closed forms solutions are also obtained in terms of confluent hypergeometric function. This is the first attempt to determine the exact solutions for the non-linear equations of MHD micropolar fluid model. It is demonstrated that the microrotation parameter helps in increasing Nusselt number and the dual solutions exist for all fluid flow parameters under consideration. The dual behavior of dimensionless velocity, temperature, microrotation, skin-friction coefficient,local Nusselt number is displayed on graphs and examined.展开更多
基金the financial support of National Board forHigher Mathematics (NBHM),DAE,Mumbai,India for pursuing this workThe research of A. Alsaedi is partially supported by the Deanship of Scientific Research (DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing equations are converted to an ordinary differential equation and then solved analytically.The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case.The similarity solution is always unique in the stretching case,and in the shrinking case the solution shows dual nature for certain values of the parameters.For stronger magnetic field,the similarity solution for the shrinking sheet case becomes unique.
文摘This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.
文摘We investigate the dual solutions for the MHD flow of micropolar fluid over a stretching/shrinking sheet with heat transfer. Suitable relations transform the partial differential equations into the ordinary differential equations.Closed forms solutions are also obtained in terms of confluent hypergeometric function. This is the first attempt to determine the exact solutions for the non-linear equations of MHD micropolar fluid model. It is demonstrated that the microrotation parameter helps in increasing Nusselt number and the dual solutions exist for all fluid flow parameters under consideration. The dual behavior of dimensionless velocity, temperature, microrotation, skin-friction coefficient,local Nusselt number is displayed on graphs and examined.