期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics 被引量:17
1
作者 Tran Quang Trung Le Thai Duy +1 位作者 Subramanian Ramasundaram Nae-Eung Lee 《Nano Research》 SCIE EI CAS CSCD 2017年第6期2021-2033,共13页
Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an i... Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an important role in electronic skin and personal healthcare applications. However, most stretchable humidity sensors are based on the geometric engineering of non-stretchable components and only a few detailed studies are available on stretchable humidity sensors under applied mechanical deformations. In this paper, we propose a transparent, stretchable humidity sensor with a simple fabrication process, having intrinsically stretchable components that provide high stretchability, sensitivity, and stability along with fast response and relaxation time. Composed of reduced graphene oxide-polyurethane composites and an elastomeric conductive electrode, this device exhibits impressive response and relaxation time as fast as 3.5 and 7 s, respectively. The responsivity and the response and relaxation time of the device in the presence of humidity remain almost unchanged under stretching up to a strain of 60% and after 10,000 stretching cycles at a 40% strain. Further, these stretchable humidity sensors can be easily and conformally attached to a finger for monitoring the humidity levels of the environment around the human body, wet objects, or human skin. 展开更多
关键词 transparent stretchablehumidity sensor reduced graphene oxide wearable electronics body-attachable intrinsically stretchable components
原文传递
Recent advances in flexible and stretchable electronics, sensors and power sources 被引量:10
2
作者 TOK Jeffrey B.-H. 《Science China Chemistry》 SCIE EI CAS 2012年第5期718-725,共8页
There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch... There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources. 展开更多
关键词 organic transistors flexible electronics stretchable electronics electronic skin SENSOR
原文传递
高灵敏度和高线性度的可拉伸应变传感器的分层结构设计
3
作者 武春锦 彭义豪 +4 位作者 王少龙 邱炳人 李冠军 曹玉杰 赖文勇 《Science China Materials》 SCIE EI CAS CSCD 2024年第7期2319-2328,共10页
对柔性电子设备日益增长的需求使得开发具有高灵敏度和高线性度的传感器更加迫切.由于拉伸应变下不可逆结构损伤诱导电阻线性急剧增加,现有的可拉伸应变传感器难以完美地同时实现这两个特性.针对这一问题,本文提出了一种兼具表面褶皱和... 对柔性电子设备日益增长的需求使得开发具有高灵敏度和高线性度的传感器更加迫切.由于拉伸应变下不可逆结构损伤诱导电阻线性急剧增加,现有的可拉伸应变传感器难以完美地同时实现这两个特性.针对这一问题,本文提出了一种兼具表面褶皱和体相梯度孔隙的新型分级互连结构,利用水热活化机制精确控制纳米级褶皱间距,通过调控相分离中热力学和动力学行为构筑出体相梯度多孔结构,通过改变器件两侧曲率实现各向异性特征,深入研究各种设计的功效、量化几何结构对灵敏度的有效贡献和追踪形态演变.基于器件显著的灵敏度和各向异性,所制备的传感器能够有效监测静态和动态位移、表面运动、二维应变信号变化以及预测液位随时间变化.本工作为实现高质量的感知能力提供了一种广泛适用、适应性强、可扩展且具有成本效益的方法. 展开更多
关键词 stretchable electronics stretchable strain sensors surface wrinkles sensitivity LINEARITY
原文传递
可延展结构的设计及力学研究新进展 被引量:8
4
作者 常若菲 张一慧 宋吉舟 《固体力学学报》 CAS CSCD 北大核心 2016年第2期95-106,共12页
可延展柔性电子器件克服了传统无机电子器件脆、硬的缺点,在保持优异电学性能的同时,以其优秀的可延展性极大拓展了微电子器件的应用范围,备受国内外学术界和电子产业界瞩目.无机电子器件的可延展柔性化主要通过力学结构设计的方法实现... 可延展柔性电子器件克服了传统无机电子器件脆、硬的缺点,在保持优异电学性能的同时,以其优秀的可延展性极大拓展了微电子器件的应用范围,备受国内外学术界和电子产业界瞩目.无机电子器件的可延展柔性化主要通过力学结构设计的方法实现,论文针对近两年具有代表性的三种可延展柔性结构设计,包括分形互联岛桥结构、折纸结构和剪纸结构,简要综述了这些结构的力学研究进展,彰显了力学在可延展柔性电子器件发展中的重要作用,并展望了未来的发展方向. 展开更多
关键词 柔性电子 可延展结构 延展性 力学设计
原文传递
Bio-inspired micro/nanostructures for flexible and stretchable electronics 被引量:9
5
作者 Hongbian Li Suye Lv Ying Fang 《Nano Research》 SCIE EI CAS CSCD 2020年第5期1244-1252,共9页
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired the design of next-generation electronics with advanced functionalities.This review focuses on emerging ... The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired the design of next-generation electronics with advanced functionalities.This review focuses on emerging bio-inspired strategies for the development of flexible and stretchable electronics that can accommodate mechanical deformations and integrate seamlessly with biological systems.We will provide an overview of the practical considerations in the materials and structure designs of flexible and stretchable electronics.Recent progress in bio-inspired pressure/strain sensors,stretchable electrodes,mesh electronics,and flexible energy devices are then discussed,with an emphasis on their unconventional micro/nanostructure designs and advanced functionalities.Finally,current challenges and future perspectives are identified and discussed. 展开更多
关键词 bio-inspired structures mechanical sensors stretchable electrodes mesh electronics flexible energy devices
原文传递
可延展柔性光子/电子集成器件及转印技术 被引量:9
6
作者 黄银 李海成 +4 位作者 陈颖 蔡世生 张迎超 陆炳卫 冯雪 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第4期56-69,共14页
基于无机半导体材料的光子/电子集成器件,是现代信息系统的重要组成部分和基础支撑.人与信息的交互融合是信息技术的主要发展方向,这种新的信息交互手段对电子集成器件提出了可延展柔性化的需求,以实现物理世界、信息数据和人类社会资... 基于无机半导体材料的光子/电子集成器件,是现代信息系统的重要组成部分和基础支撑.人与信息的交互融合是信息技术的主要发展方向,这种新的信息交互手段对电子集成器件提出了可延展柔性化的需求,以实现物理世界、信息数据和人类社会资源的综合利用.可延展柔性化的集成器件,可突破传统刚性无机集成器件不可变形、无法与人体曲面环境集成的瓶颈,极大拓展了传统半导体器件的物理形态及应用范围,也必将在健康医疗、脑机融合、物联网等领域产生巨大影响.本文对可延展柔性光子/电子集成器件的基本原理和设计方法进行了详细介绍,并以大脑、心脏和皮肤可集成的可延展柔性无机电子集成器件为例展示了其在生物医疗方面的应用价值,然后介绍了可延展柔性光子/电子集成器件的转印制备技术,最后展望了其未来发展方向. 展开更多
关键词 可延展柔性 光子/电子集成器件 转印
原文传递
Liquid-metal microgrid stretchable electronics based on bionic leaf veins with ultra-stretchability and high conductivity
7
作者 Xi-Di Sun Jun-Yang An +6 位作者 Yi-Qi Sun Xin Guo Jing Wu Jiang-Bo Hua Meng-Rui Su Yi Shi Li-Jia Pan 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2747-2757,共11页
Stretchable electronics that monitor joint activity and treat diseases based on liquid metal could be used in the development of healthcare applications.Such devices can be seamlessly integrated with human skin.Howeve... Stretchable electronics that monitor joint activity and treat diseases based on liquid metal could be used in the development of healthcare applications.Such devices can be seamlessly integrated with human skin.However,most high-precision microstructures and complex patterns are difficult to fabricate due to the limitations of conventional fabrication solutions,resulting in suboptimal performance under practical conditions.Here,a liquid-metal stretchable system utilizing natural leaf veins was reported as microstructures,which was based on a biomimetic concept and utilized an all-solution process for the preparation of complex microstructures.The systems are ultra-high tensile(800%tensile strain),environmentally stable(20 days)and mechanically durable(300-cycle).The system can accurately recognize the wearer's finger bending level as well as simple gesture signals.At the same time,the system acts as a wearable heater,which can realize the fast heating behavior of heating up to 50℃in 3 min under the human body-safe voltage(1.5 V).The tensile stability is demonstrated by the heterogeneous integration of lasers(405 nm)with the system interconnects for a stretchable and wearable light source. 展开更多
关键词 stretchable electronics Liquid metal stretchable conductor VEIN Bionicist electronics
原文传递
Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity
8
作者 Shi Wang Jixin He +4 位作者 Qiange Li Yu Wang Chongyang Liu Tao Cheng Wen-Yong Lai 《Fundamental Research》 CAS CSCD 2024年第1期140-146,共7页
Stretchable power sources,especially stretchable lithium-ion batteries(LIBs),have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics.Despite recent advances,it is... Stretchable power sources,especially stretchable lithium-ion batteries(LIBs),have attracted increasing attention due to their enormous prospects for powering flexible/wearable electronics.Despite recent advances,it is still challenging to develop ultra-stretchable LIBs that can withstand large deformation.In particular,stretchable LIBs require an elastic electrolyte as a basic component,while the conductivity of most elastic electrolytes drops sharply during deformation,especially during large deformations.This is why highly stretchable LIBs have not yet been realized until now.As a proof of concept,a super-stretchable LIB with strain up to 1200%is created based on an intrinsically super-stretchable polymer electrolyte as the lithium-ion conductor.The super-stretchable conductive system is constructed by an effective diblock copolymerization strategy via photocuring of vinyl functionalized 2-ureido-4-pyrimidone(VFUpy),an acrylic monomer containing succinonitrile and a lithium salt,achieving high ionic conductivity(3.5×10^(-4)mS cm^(-1)at room temperature(RT))and large deformation(the strain can reach 4560%).The acrylic elastomer containing Li-ion conductive domains can strongly increase the compatibility between the neighboring elastic networks,resulting in high ionic conductivity under ultra-large deformation,while VFUpy increases elasticity modulus(over three times)and electrochemical stability(voltage window reaches 5.3 V)of the prepared polymer conductor.At a strain of up to 1200%,the resulting stretchable LIBs are still sufficient to power LEDs.This study sheds light on the design and development of high-performance intrinsically super-stretchable materials for the advancement of highly elastic energy storage devices for powering flexible/wearable electronics that can endure large deformation. 展开更多
关键词 stretchable electronics Flexible electronics Flexible energy storage devices stretchable lithium-ion conductors Flexible lithium-ion batteries
原文传递
基于褶皱结构的可拉伸有机电致发光器件研究进展
9
作者 贾士鑫 张浩洋 +1 位作者 银达 冯晶 《科学通报》 EI CAS CSCD 北大核心 2024年第1期96-111,共16页
近年来,随着柔性和可穿戴电子设备的发展,人们对可拉伸设备的需求不断提升,促进了可拉伸电子器件的快速发展.可拉伸显示器在可拉伸电子设备中起到信息传递和人机交互的作用,是可拉伸电子设备的重要组成部分.可拉伸发光器件作为可拉伸显... 近年来,随着柔性和可穿戴电子设备的发展,人们对可拉伸设备的需求不断提升,促进了可拉伸电子器件的快速发展.可拉伸显示器在可拉伸电子设备中起到信息传递和人机交互的作用,是可拉伸电子设备的重要组成部分.可拉伸发光器件作为可拉伸显示器的核心组成部分之一,受到广泛关注.随着材料、工艺和器件结构设计的不断发展与进步,可拉伸发光器件的研究得到快速发展,多种策略被开发出来用于实现器件的拉伸性,且器件性能显著提高.其中,基于褶皱结构的可拉伸有机电致发光器件因其优异的光电性能和机械拉伸性而在可穿戴电子设备、电子皮肤、智能服装等领域展现出较大的应用潜力,成为制备可拉伸显示器的候选器件之一.本文对基于褶皱结构可拉伸有机电致发光器件的研究进展进行综述,首先介绍了褶皱结构的形成机制及相关的理论,然后对褶皱结构型可拉伸有机电致发光器件按照拉伸维度和褶皱有序性进行分类,总结了不同类型器件的设计思路、制造方案和器件性能特点.最后,简要讨论了褶皱结构可拉伸有机电致发光器件存在的一些挑战及对未来的展望. 展开更多
关键词 可拉伸电子器件 可拉伸有机电致发光器件 褶皱结构 超薄柔性器件 弹性衬底
原文传递
Printing practice for the fabrication of flexible and stretchable electronics 被引量:3
10
作者 CUI Zheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第2期224-232,共9页
Recently, flexible and stretchable electronics have experienced tremendous surge due to their promised applications in fields such as wearable electronics, portable energy devices, flexible display, and human-skin sen... Recently, flexible and stretchable electronics have experienced tremendous surge due to their promised applications in fields such as wearable electronics, portable energy devices, flexible display, and human-skin sensors. In order to fabricate flexible and stretchable electronics, a high-throughput, cost-saving, and eco-friendly manufacturing technology is required. Printing, which is an additive patterning process, can meet those requirements. In this article, printing fabrication is compared with conventional lithography process. Practices at the author's group utilizing printing for the fabrication of flexible thin-film transistors, flexible hybrid circuits and stretchable systems are presented, which has proven that printing can indeed be a viable method to fabricate flexible and stretchable electronics. 展开更多
关键词 PRINTED electronics FLEXIBLE electronics stretchable electronics electronic INKS
原文传递
Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors 被引量:7
11
作者 Ludong Li Zheng Lou +2 位作者 Haoran Chen Ruilong Shi Guozhen Shen 《Science China Materials》 SCIE EI CSCD 2019年第8期1139-1150,共12页
Stretchable ultraviolet photodetectors with fast response have wide applications in wearable electronics and implantable biomedical devices. However, most of the conventional binary oxide nanowires based photodetector... Stretchable ultraviolet photodetectors with fast response have wide applications in wearable electronics and implantable biomedical devices. However, most of the conventional binary oxide nanowires based photodetectors exhibit slow response due to the presence of a large number of surface defects related to trapping centers. Herein, with interlaced SnO2-CdS nanowire films as the sensing materials, we fabricated stretchable ultraviolet photodetectors with significantly improved response speed via a multiple lithographic filtration method. Systematic investigations reveal that the interlaced-nanowire based photodetectors have lower dark current and much higher response speed(more than 100 times) compared with pure SnO2 nanowire based photodetectors. The relevant carrier generation and transport mechanism were also discussed. In addition, due to the formation of waved wrinkles on the surface of the nanowires/PDMS layer during the prestretching cycles, the SnO2-CdS interlaced nanowire photodetectors display excellent electrical stability and stretching cyclability within 50% strain, without obvious performance degradation even after 150 stretching cycles. As a simple and effective strategy to fabricate stretchable ultraviolet photodetectors with high response speed, the interlacednanowire structure can also be applied to other nanowire pairs, like ZnO-CdS interlaced-nanowires. Our method provides a versatile way to fabricate fast speed ultraviolet photodetectors by using interlaced metal oxide nanowires-CdS nanowires structures, which is potential in future stretchable and wearable optoelectronic devices. 展开更多
关键词 stretchable electronics interlaced-nanowire structure nanowire photodetectors SnO2-CdS
原文传递
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics
12
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Emerging interactively stretchable electronics with optical and electrical dual-signal feedbacks based on structural color materials
13
作者 Jialin Wang Kai Zhao +1 位作者 Changqing Ye Yanlin Song 《Nano Research》 SCIE EI CSCD 2024年第3期1837-1855,共19页
The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices.With mechanosensory functionality,these devices are highly desirable on account of their wide range of a... The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices.With mechanosensory functionality,these devices are highly desirable on account of their wide range of applications in electronic skin,personal healthcare,human–machine interfaces and beyond.However,they are mostly limited by single electrical signal feedback,restricting their diverse applications in visualized mechanical sensing.Inspired by the mechanochromism of structural color materials,interactively stretchable electronics with optical and electrical dual-signal feedbacks are recently emerged as novel sensory platforms,by combining both of their sensing mechanisms and characteristics.Herein,recent studies on interactively stretchable electronics based on structural color materials are reviewed.Following a brief introduction of their basic components(i.e.,stretchable electronics and mechanochromic structural color materials),two types of interactively stretchable electronics with respect to the nanostructures of mechanochromic materials are outlined,focusing primarily on their design considerations and fabrication strategies.Finally,the main challenges and future perspectives of these emerging devices are discussed. 展开更多
关键词 stretchable electronics structural color materials interactive sensing mechanochromism dual-signal feedbacks
原文传递
超弹性薄膜与可压缩基底双层结构表面失稳分析 被引量:6
14
作者 黄春阳 唐山 彭向和 《力学学报》 EI CSCD 北大核心 2017年第4期758-762,共5页
当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材... 当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材料的表面失稳,即改变基底材料的泊松比,这种方法同时适用于不具有应变硬化的软材料.首先基于Neo-Hookean模型发展了小变形条件下双层结构表面失稳的理论模型,通过半解析的方法得到了表面失稳的临界应变;然后通过有限元计算与模拟,进一步验证了负泊松比基底可延缓表面失稳.结果表明:(1)当双层结构基底泊松比为正且趋于0.5(不可压缩)时,双层结构在较小的压缩应变下出现表面失稳;(2)当基底的泊松比为负且趋于-1时,可被压缩至46%而不出现表面失稳,即可膨胀基底能有效抑制薄膜的表面失稳.本文发展的方法及主要结果可为延展性电子器件的设计提供指导. 展开更多
关键词 薄膜--基底结构 表面失稳 负泊松比 可延展性电子
下载PDF
Cost-effective fabrication of liquid metals via a laser induced graphene stamp for highly-stretchable integrated optoelectronics
15
作者 Weiqi Sun Li Xiang +3 位作者 Zebang Luo Hui Wang Dong Li Anlian Pan 《Nano Research》 SCIE EI CSCD 2024年第8期7603-7613,共11页
Stretchable electronics have found widespread applications in various fields such as wearable electronics,soft robots,and bioelectronics.As an important promising alternative of traditional rigid conductors,liquid met... Stretchable electronics have found widespread applications in various fields such as wearable electronics,soft robots,and bioelectronics.As an important promising alternative of traditional rigid conductors,liquid metals have demonstrated immense potential to provide high conductivity and stretchability for the stretchable electronic systems.However,limited by their fluidity and high surface tension,challenges remain in achieving liquid metal patterns with low-cost,high-precision,large-scale,and complex geometry.Here,a fabrication technique was proposed based on laser-induced graphene(LIG)stamps to enable liquid metal self-selectively adhere to substrates.Liquid metal patterns could thus be achieved in different designed geometries and could be transferred onto stretchable substrates.The liquid metal patterns exhibit exceptional electrical conductivity(3.24×10^(6)S/m even under 1000%strain),high stretchability(1000%strain,maximum of 2500%),small resistance changes under significant deformations(with a quality factor of 62.5 under 1000%strain),and high resolution(down to 50μm).Utilizing the patterned liquid metals,a stretchable integrated multifunctional optoelectronic system was demonstrated,encompassing a stretchable display matrix,a pressure sensor array,a wireless powering coil,and cardiovascular sensors,which further highlight the remarkable application potential of liquid metals in optoelectronic user-interaction and advanced physiological monitoring. 展开更多
关键词 liquid metal WETTABILITY selective adhesion transfer printing stretchable electronics
原文传递
基于辛Runge-Kutta方法的棋盘形褶皱二维薄膜-基底结构动力学特性研究
16
作者 张博涵 曹善成 +2 位作者 王博 欧阳华江 徐方暖 《计算力学学报》 CAS CSCD 北大核心 2024年第1期186-193,共8页
基于力学屈曲原理的褶皱薄膜-基底结构已成功应用于制备可延展无机电子器件。然而,该类电子器件在应用时需要服役于复杂动态环境中,针对棋盘形褶皱薄膜结构的动力学问题鲜有研究,此问题又是该类电子器件走向实际应用需要解决的关键问题... 基于力学屈曲原理的褶皱薄膜-基底结构已成功应用于制备可延展无机电子器件。然而,该类电子器件在应用时需要服役于复杂动态环境中,针对棋盘形褶皱薄膜结构的动力学问题鲜有研究,此问题又是该类电子器件走向实际应用需要解决的关键问题之一。本文首先采用能量方法,分别计算了二维薄膜的弯曲能、膜弹性能和柔性基底中的弹性能以及薄膜动能;然后采用拉格朗日方程,推导出了该结构的振动控制方程;而该方程为非线性动力学方程,无法给出其解析解;因此,本文采用辛Runge-Kutta方法对其进行数值求解;数值结果表明,辛数值方法具有长期稳定的特性和系统结构特性,为高精度的可延展电子器件的动力学问题研究提供了优异的数值方法。 展开更多
关键词 可延展电子器件 薄膜-基底结构 辛算法 保结构
下载PDF
Intrinsically Stretchable Electroluminescent Materials and Devices
17
作者 Wei Liu Glingna Wang Sihong Wang 《CCS Chemistry》 CSCD 2024年第6期1360-1379,共20页
Intrinsically stretchable electroluminescent(EL)devices have emerged as pivotal components with transformative potential in various domains,including wearable technology,medical devices,human-machine interfaces,and co... Intrinsically stretchable electroluminescent(EL)devices have emerged as pivotal components with transformative potential in various domains,including wearable technology,medical devices,human-machine interfaces,and communications.This mini-review focuses on the recent progress in the development of intrinsically stretchable EL materials,highlighting milestones and breakthroughs in the field.The article discusses the basic principles,advantages,and disadvantages associated with various EL mechanisms and materials.Specific material design strategies,particularly focusing on light-emitting layers,are thoroughly examined,detailing their implementation in EL devices and the resultant EL performance.We also provide perspectives on the active challenges and future research needs for each type of EL material and devices for achieving stretchable designs,together with some insights into the future trajectory of stretchable EL technology. 展开更多
关键词 stretchable electronics electroluminescent materials electroluminescent devices lightemitting diodes thermally activated delayed fluorescence
原文传递
Liquid Metal Grid Patterned Thin Film Devices Toward Absorption‑Dominant and Strain‑Tunable Electromagnetic Interference Shielding
18
作者 Yuwen Wei Priyanuj Bhuyan +9 位作者 Suk Jin Kwon Sihyun Kim Yejin Bae Mukesh Singh Duy Thanh Tran Minjeong Ha Kwang‑Un Jeong Xing Ma Byeongjin Park Sungjune Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期541-553,共13页
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect... The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics. 展开更多
关键词 Absorption-dominant electromagnetic interference shielding Liquid metals Soft and stretchable electronics Thin film devices Tunable electromagnetic interference shielding
下载PDF
A strain-isolation design for stretchable electronics 被引量:4
19
作者 Jian Wu Ming Li +6 位作者 Wei-Qiu Chen Dae-Hyeong Kim Yun-Soung Kim Yong-Gang Huang Keh-Chih Hwang Zhan Kang John A.Rogers 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期881-888,共8页
Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they ... Stretchable electronics represents a direction of recent development in next-generation semiconductor devices.Such systems have the potential to offer the performance of conventional wafer-based technologies,but they can be stretched like a rubber band,twisted like a rope, bent over a pencil,and folded like a piece of paper.Isolating the active devices from strains associated with such deformations is an important aspect of design.One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple,analytical model and validates the results by the finite element method.The results show that a relatively thick,compliant adhesive is effective to reduce the strain in the electronics,as is a relatively short film. 展开更多
关键词 Strain isolation Thin film SUBSTRATE ADHESIVE stretchable electronics
下载PDF
Mechanics of flexible and stretchable piezoelectrics for energy harvesting 被引量:5
20
作者 CHEN Ying LU BingWei +1 位作者 OU DaPeng FENG Xue 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第9期39-51,共13页
As rapid development in wearable/implantable electronic devices benefit human life in daily health monitoring and disease treatment medically, all kinds of flexible and/or stretchable electronic devices are booming, t... As rapid development in wearable/implantable electronic devices benefit human life in daily health monitoring and disease treatment medically, all kinds of flexible and/or stretchable electronic devices are booming, together with which is the demanding of energy supply with similar mechanical property. Due to its ability in converting mechanical energy lying in human body into electric energy, energy harvesters based on piezoelectric materials are promising for applications in wearable/implantable device's energy supply in a renewable, clean and life-long way. Here the mechanics of traditional piezoelectrics in energy harvesting is reviewed, including why piezoelectricity is the choice for minor energy harvesting to power the implantable/wearable electronics and how. Different kinds of up to date flexible piezoelectric devices for energy harvesting are introduced, such as nanogenerators based on Zn O and thin and conformal energy harvester based on PZT. A detailed theoretical model of the flexible thin film energy harvester based on PZT nanoribbons is summarized, together with the in vivo demonstration of energy harvesting by integrating it with swine heart. Then the initial researches on stretchable energy harvesters based on piezoelectric material in wavy or serpentine configuration are introduced as well. 展开更多
关键词 piezoelectric effect energy harvesting flexible electronics stretchable electronics
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部