Age related defect of the osteogenic differentiation of mesenchymal stem cells(MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation....Age related defect of the osteogenic differentiation of mesenchymal stem cells(MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation.Here, we compared the osteogenic potential of MSCs from young and adult rats under three rounds of 2 h of cyclic stretch of 2.5% elongation at 1 Hz on 3 consecutive days. Cyclic stretch induced a significant osteogenic differentiation of MSCs from young rats, while a compromised osteogenesis in MSCs from the adult rats.Accordingly, there were much more reactive oxygen species(ROS) production in adult MSCs under cyclic stretch compared to young MSCs. Moreover, ROS scavenger N-acetylcysteine rescued the osteogenic differentiation of adult MSCs under cyclic stretch. Gene expression analysis revealed that superoxide dismutase 1(SOD1) was significantly downregulated in those MSCs from adult rats. In summary, our data suggest that reduced SOD1 may result in excessive ROS production in adult MSCs under cyclic stretch, and thus manipulation of the MSCs from the adult donors with antioxidant would improve their osteogenic ability.展开更多
Background Apoptosis is involved in the adaptive responses of bone to mechanical loading. The purpose of this study was to investigate the effects of tensile forces on osteoblast apoptosis and the related mechanism by...Background Apoptosis is involved in the adaptive responses of bone to mechanical loading. The purpose of this study was to investigate the effects of tensile forces on osteoblast apoptosis and the related mechanism by analyzing the expression of caspases, Bcl-2, and Bax. Methods Primary osteoblasts were harvested from neonatal rat calvaria and were subjected to cyclic tensile forces for 72 hours using Flexcell 4000 strain unit in Minimum Essential Medium (MEM) with 10% fetal calf serum (FCS) or with serum deprivation. Apoptosis was tested by flow cytometry using annexin V/PI staining. Caspase-3 activity was analyzed via Elisa. The gene expression of caspase-8, -9, Bcl-2, and Bax was quantified by reverse transcription (RT)-PCR. Results In 10% FCS condition, no significant difference in cell apoptosis was found between the stretched and non-stretched osteoblast cultures. Serum withdrawal resulted in higher apoptosis rate in the osteoblasts with increased caspase-3 activity, and elevated expression of caspase-9 and Bax. Six-percent elongation of stretch attenuated the cell apoptosis induced by serum starvation, concurrent with a decrease in caspase-3 activity, a decline of caspase-8 expression, and an elevation of Bcl-2 level. On the contrary, 12% elongation of stretch increased caspase-3 activity and promoted the apoptosis with an elevated expression of caspase-8 and Bax. No significant change of caspase-9 expression was identified upon force application. Conclusions These results suggested that tensile forces regulate cell apoptosis of primary rat osteoblasts through caspase-3 and caspase-8 signaling cascade. Light forces rescue the cells from serum deprivation-induced apoptosis by elevating Bcl-2 expression, while heavy forces promote the apoptotic insult by inducing Bax expression.展开更多
The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were perf...The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were performed by pre-strain paths,i.e.,tension(6%)and compression(5%)perpendicular to the c-axis along extrusion direction(ED),to investigate the microstructural evolution and mechanical properties of AZ31 Mg alloy sheets.The distinction in the texture evolution and strain hardening behavior was illustrated in connection with the pre-strain paths for the activities of twinning and slip.The result shows that the activation of the deformation mode was closely bound up with the grain orientation and the additional applied load direction.The{10–12}twin-texture components with c-axis//ED were generated by precompression,which can provide an appropriate alternative to accommodate the thin sheet thickness strain and enhance the room temperature formability of Mg alloy sheet.展开更多
The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and ...The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.展开更多
基金financially supported by National Natural Science Foundation of China (81100240)‘985’ project of Sun Yat-Sen University grant+2 种基金Sun Yat-Sen university young teachers training project (13YKPY42)Natural Science Foundation of Guangdong Province,China(S2012010009495)Science and Technology Planning Project of Guangdong Province,China(2012B031800185)
文摘Age related defect of the osteogenic differentiation of mesenchymal stem cells(MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation.Here, we compared the osteogenic potential of MSCs from young and adult rats under three rounds of 2 h of cyclic stretch of 2.5% elongation at 1 Hz on 3 consecutive days. Cyclic stretch induced a significant osteogenic differentiation of MSCs from young rats, while a compromised osteogenesis in MSCs from the adult rats.Accordingly, there were much more reactive oxygen species(ROS) production in adult MSCs under cyclic stretch compared to young MSCs. Moreover, ROS scavenger N-acetylcysteine rescued the osteogenic differentiation of adult MSCs under cyclic stretch. Gene expression analysis revealed that superoxide dismutase 1(SOD1) was significantly downregulated in those MSCs from adult rats. In summary, our data suggest that reduced SOD1 may result in excessive ROS production in adult MSCs under cyclic stretch, and thus manipulation of the MSCs from the adult donors with antioxidant would improve their osteogenic ability.
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30500572), Shanghai Municipal Education Commission (No. 09YZ75), and Shanghai Leading Academic Discipline Project (No. S30206).
文摘Background Apoptosis is involved in the adaptive responses of bone to mechanical loading. The purpose of this study was to investigate the effects of tensile forces on osteoblast apoptosis and the related mechanism by analyzing the expression of caspases, Bcl-2, and Bax. Methods Primary osteoblasts were harvested from neonatal rat calvaria and were subjected to cyclic tensile forces for 72 hours using Flexcell 4000 strain unit in Minimum Essential Medium (MEM) with 10% fetal calf serum (FCS) or with serum deprivation. Apoptosis was tested by flow cytometry using annexin V/PI staining. Caspase-3 activity was analyzed via Elisa. The gene expression of caspase-8, -9, Bcl-2, and Bax was quantified by reverse transcription (RT)-PCR. Results In 10% FCS condition, no significant difference in cell apoptosis was found between the stretched and non-stretched osteoblast cultures. Serum withdrawal resulted in higher apoptosis rate in the osteoblasts with increased caspase-3 activity, and elevated expression of caspase-9 and Bax. Six-percent elongation of stretch attenuated the cell apoptosis induced by serum starvation, concurrent with a decrease in caspase-3 activity, a decline of caspase-8 expression, and an elevation of Bcl-2 level. On the contrary, 12% elongation of stretch increased caspase-3 activity and promoted the apoptosis with an elevated expression of caspase-8 and Bax. No significant change of caspase-9 expression was identified upon force application. Conclusions These results suggested that tensile forces regulate cell apoptosis of primary rat osteoblasts through caspase-3 and caspase-8 signaling cascade. Light forces rescue the cells from serum deprivation-induced apoptosis by elevating Bcl-2 expression, while heavy forces promote the apoptotic insult by inducing Bax expression.
基金National Natural Science Foundation of China(51701033,51701035)Chongqing Municipal Education Commission(KJQN201901504,KJZD-K202001502)Chongqing Science and Technology Commission(cstc2018jcyjAX0022).
文摘The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were performed by pre-strain paths,i.e.,tension(6%)and compression(5%)perpendicular to the c-axis along extrusion direction(ED),to investigate the microstructural evolution and mechanical properties of AZ31 Mg alloy sheets.The distinction in the texture evolution and strain hardening behavior was illustrated in connection with the pre-strain paths for the activities of twinning and slip.The result shows that the activation of the deformation mode was closely bound up with the grain orientation and the additional applied load direction.The{10–12}twin-texture components with c-axis//ED were generated by precompression,which can provide an appropriate alternative to accommodate the thin sheet thickness strain and enhance the room temperature formability of Mg alloy sheet.
基金Project (20090450276) supported by the China Postdoctoral Science FoundationProject (50905008) supported by the National Natural Science Foundation of China
文摘The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.