Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollo...Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.展开更多
The flexoelectric effect is very strong and coupled with large strain gradients for nanoscale dielectrics. At the nanoscale, the electrostatic force cannot be ignored. In this paper, we have established the electric e...The flexoelectric effect is very strong and coupled with large strain gradients for nanoscale dielectrics. At the nanoscale, the electrostatic force cannot be ignored. In this paper, we have established the electric enthalpy variational principle for nanosized dielectrics with the strain gradient and the polarization gradient effect, as well as the effect of the electrostatic force. The complete governing equations, which include the effect of the electrostatic force, are derived from this variational principle, and based on the principle the generalized electrostatic stress is obtained, the generalized electrostatic stress contains the Maxwell stress corresponding to the polarization and strain, and stress related to the polarization gradient and strain gradient. This work provides the basis for the analysis and computations for the electromechanical problems in nanosized dielectric materials.展开更多
The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-d...The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new ins展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875230)
文摘Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
基金supported by the National Basic Research Program of China (Grant No. 2007CB707702)the National Natural Science Founda-tion of China (Grant Nos. 10672130 and 10972173), and Ministry of Edu-cation of China
文摘The flexoelectric effect is very strong and coupled with large strain gradients for nanoscale dielectrics. At the nanoscale, the electrostatic force cannot be ignored. In this paper, we have established the electric enthalpy variational principle for nanosized dielectrics with the strain gradient and the polarization gradient effect, as well as the effect of the electrostatic force. The complete governing equations, which include the effect of the electrostatic force, are derived from this variational principle, and based on the principle the generalized electrostatic stress is obtained, the generalized electrostatic stress contains the Maxwell stress corresponding to the polarization and strain, and stress related to the polarization gradient and strain gradient. This work provides the basis for the analysis and computations for the electromechanical problems in nanosized dielectric materials.
文摘The purpose of this paper is to revisit the well known potentials, also called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949, 1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed is equal to for any minimal parametrization, the Einstein parametrization being “in between” with potentials. We provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today, but it could be strictly impossible to obtain them without using the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new ins