For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared...For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics(ISRM)and were treated at various temperatures ranging from room temperature(25 ℃) to 600 ℃. Mode-I FT was correlated with tensile strength(TS), ultrasonic velocities, and Young’s modulus(YM). Additionally,petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy(SEM) was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 ℃, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.展开更多
Target strength(TS)and circular synthetic aperture sonar(CSAS)images provide essential information for active acoustic detection and recognition of non-cooperative unmanned undersea vehicles(UUVs),which pose a signifi...Target strength(TS)and circular synthetic aperture sonar(CSAS)images provide essential information for active acoustic detection and recognition of non-cooperative unmanned undersea vehicles(UUVs),which pose a significant threat to underwater preset facilities.To access them,we propose an iterative physical acoustics(IPA)-based method to simulate the multiple acoustic scattered fields on rigid surfaces in high-frequency cases.It uses the Helmholtz integral equation with an appropriate Green's function in terms of the Neumann series,and then incorporates the ideas of triangulation and iteration into a numerical implementation.Then two approximate analytic formulae with precise physical meanings are derived to predict the TS and CSAS images of concave targets,respectively.There are no restrictions on the surface's curvature and the order of multiple scattering.The method is validated against the finite element method(FEM)for acoustic scattering from a sphere segment and against an experiment involving an X-rudder UUV's stern.On this basis,we simulate and analyze the TS and CSAS images of an X-rudder UUV.In addition,the influence of the angle of adjacent rudders on the multiple scattering characteristics is discussed.Results show that this method can potentially predict accurate UUV features,especially the multiple scattered features.展开更多
Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering m...Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering models strongly depends on the size and structure of the scattered surface.In accurate scattering models including numerical models,the computational cost significantly increases with the object complexity.In this paper,an efficient model is proposed to calculate the acoustic scattering from underwater objects with less computational cost and time compared with numerical models,especially in 3D space.The proposed model,called texture element method(TEM),uses statistical and structural information of the target surface texture by employing non-uniform elements described with local binary pattern(LBP)descriptors by solving the Helmholtz integral equation.The proposed model is compared with two other well-known models,one numerical and other analytical,and the results show excellent agreement between them while the proposed model requires fewer elements.This demonstrates the ability of the proposed model to work with arbitrary targets in different SAS systems with better computational time and cost,enabling the proposed model to be applied in real environment.展开更多
Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addi...Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addition of SDS in wheat glutens prior to forming films significantly increased the elongation at break(E) (P<0.05) and reduced notably the water vapor permeability(WVP) (P<0.05). In contrast,a decrease in the tensile strength(TS) of the films from gluten containing-SDS was found.Moreover,a significant decrease in P_(O_2) and P_(CO_2) of films from gluten treated with SDS was noticed. Although SDS-treated gluten film was slightly more yellow and darker than control one, it was not visually detrimental. It is indicated that the treatment with SDS prior to forming films greatly enhances the mechanical properties of wheat gluten films.The obivous improvement in water vapor permeability and extensibility of gluten films means that the use of SDS is a potential choice for improving properties of gluten films. The edible film was used to preserve tomatoes. The experimental results show that the shelf life of tomatoes coated with the edible film is extended, and the nutritional quality is kept well.展开更多
文摘For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics(ISRM)and were treated at various temperatures ranging from room temperature(25 ℃) to 600 ℃. Mode-I FT was correlated with tensile strength(TS), ultrasonic velocities, and Young’s modulus(YM). Additionally,petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy(SEM) was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 ℃, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.
基金supported by the National Youth Science Foundation of China(Grant No.52001211).
文摘Target strength(TS)and circular synthetic aperture sonar(CSAS)images provide essential information for active acoustic detection and recognition of non-cooperative unmanned undersea vehicles(UUVs),which pose a significant threat to underwater preset facilities.To access them,we propose an iterative physical acoustics(IPA)-based method to simulate the multiple acoustic scattered fields on rigid surfaces in high-frequency cases.It uses the Helmholtz integral equation with an appropriate Green's function in terms of the Neumann series,and then incorporates the ideas of triangulation and iteration into a numerical implementation.Then two approximate analytic formulae with precise physical meanings are derived to predict the TS and CSAS images of concave targets,respectively.There are no restrictions on the surface's curvature and the order of multiple scattering.The method is validated against the finite element method(FEM)for acoustic scattering from a sphere segment and against an experiment involving an X-rudder UUV's stern.On this basis,we simulate and analyze the TS and CSAS images of an X-rudder UUV.In addition,the influence of the angle of adjacent rudders on the multiple scattering characteristics is discussed.Results show that this method can potentially predict accurate UUV features,especially the multiple scattered features.
文摘Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar(SAS)systems.The complexity of scattering models strongly depends on the size and structure of the scattered surface.In accurate scattering models including numerical models,the computational cost significantly increases with the object complexity.In this paper,an efficient model is proposed to calculate the acoustic scattering from underwater objects with less computational cost and time compared with numerical models,especially in 3D space.The proposed model,called texture element method(TEM),uses statistical and structural information of the target surface texture by employing non-uniform elements described with local binary pattern(LBP)descriptors by solving the Helmholtz integral equation.The proposed model is compared with two other well-known models,one numerical and other analytical,and the results show excellent agreement between them while the proposed model requires fewer elements.This demonstrates the ability of the proposed model to work with arbitrary targets in different SAS systems with better computational time and cost,enabling the proposed model to be applied in real environment.
文摘Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addition of SDS in wheat glutens prior to forming films significantly increased the elongation at break(E) (P<0.05) and reduced notably the water vapor permeability(WVP) (P<0.05). In contrast,a decrease in the tensile strength(TS) of the films from gluten containing-SDS was found.Moreover,a significant decrease in P_(O_2) and P_(CO_2) of films from gluten treated with SDS was noticed. Although SDS-treated gluten film was slightly more yellow and darker than control one, it was not visually detrimental. It is indicated that the treatment with SDS prior to forming films greatly enhances the mechanical properties of wheat gluten films.The obivous improvement in water vapor permeability and extensibility of gluten films means that the use of SDS is a potential choice for improving properties of gluten films. The edible film was used to preserve tomatoes. The experimental results show that the shelf life of tomatoes coated with the edible film is extended, and the nutritional quality is kept well.