Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers is ...Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers is essential for effective management of water and fisheries resources. This study deals with the modeling of hourly stream water temperature using the equilibrium temperature model. This water temperature model was applied on two thermally different watercourses, namely, the Little Southwest Miramichi River (LSWM) and Catamaran Brook (CatBk;New Brunswick). The equilibrium temperature model is a simplified version of a deterministic model. As such, in the equilibrium temperature model the total heat flux at the surface is assumed proportional to the difference between the water temperature and an equilibrium temperature. In the present study, the equilibrium temperature was assumed to vary linearly with hourly air temperature. This study showed that there was a good relationship between the equilibrium and air temperature at the hourly time scale. The root-mean-square error (RMSE) obtained with the hourly equilibrium temperature model was similar to results reported in previous studies with values of 1.05°C (CatBk) and 1.36°C (LSWM). The model’s performance was best in late summer and autumn when water levels were low. In contrast, the presence of snowmelt in the spring resulted in poorer performances. This study also showed good results in estimating the daily mean (Tmean) and maximum (Tmax) water temperatures from the predicted hourly water temperatures, which were often required in fishery management.展开更多
Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of whi...Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km^(–1) to +0.28℃ km^(–1)). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.展开更多
文摘Water temperature is a key physical habitat determinant in lotic ecosystems as it influences many physical, chemical and biological properties of rivers. Hence, a good understanding of the thermal regime of rivers is essential for effective management of water and fisheries resources. This study deals with the modeling of hourly stream water temperature using the equilibrium temperature model. This water temperature model was applied on two thermally different watercourses, namely, the Little Southwest Miramichi River (LSWM) and Catamaran Brook (CatBk;New Brunswick). The equilibrium temperature model is a simplified version of a deterministic model. As such, in the equilibrium temperature model the total heat flux at the surface is assumed proportional to the difference between the water temperature and an equilibrium temperature. In the present study, the equilibrium temperature was assumed to vary linearly with hourly air temperature. This study showed that there was a good relationship between the equilibrium and air temperature at the hourly time scale. The root-mean-square error (RMSE) obtained with the hourly equilibrium temperature model was similar to results reported in previous studies with values of 1.05°C (CatBk) and 1.36°C (LSWM). The model’s performance was best in late summer and autumn when water levels were low. In contrast, the presence of snowmelt in the spring resulted in poorer performances. This study also showed good results in estimating the daily mean (Tmean) and maximum (Tmax) water temperatures from the predicted hourly water temperatures, which were often required in fishery management.
基金supported by the National Natural Science Foundation of China(41501063,41421061,913252001)Chinese Academy of Sciences(KJZD-EW-G03-04+1 种基金QYZDJ-SSWDQC039)the State Key Laboratory of Cryospheric Science(KJZD-ZZ-2017)
文摘Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km^(–1) to +0.28℃ km^(–1)). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.